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Abstract

The RT-Mach microkernel supports a processor reserve
abstraction which permits threads to specify their CPU
resource requirements. If admitted by the kernel, it
guarantees that the requested CPU demand is available to
the requestor. We designed this kernel-supported
mechanism to be relatively simple based on the microkernel
notion that user-level policies can use this simple
mechanism to build more complex and powerful schemes.
In this paper, we focus on the needs of such user-level
policiesin the form of a dynamic Quality of Service server.

We seek three goals: (a) explore the necessity, sufficiency,
power and flexibility of the kernel-supported reserve
mechanism (b) dynamic management of application quality
in real-time and multimedia applications, and (c) inves
tigate our ability to predict and achieve end-to-end applica
tion delays in realistic distributed real-time and multimedia
applications. We use a two-pronged approach to ac-
complish our goals. First, we apply the processor reserve
abstraction in a user-level dynamic quality of service serv-
er. A QOS server can alow applications to dynamically
adapt in real-time based on system load, user input or ap-
plication requirements. Second, we apply the dynamic
QOS control capahilities to a distributed multimedia ap-
plication whose threads have to interact and coordinate with
each other within and across processor boundaries. A new
notion called continuous thread of control is introduced to
assist in bundling processor reserves. Our experiments
show that we can indeed predict and achieve end-to-end
delays in a distributed multimedia application. A summary
of lessons learned and additional functionality needed is
also provided.

Keywords: Real-Time Mach, processor reservation, audio
conferencing, reserve bundling, end-to-end latencies.

1. Introduction

The need for real-time resource management is a key ele-
ment which explicitly distinguishes multimedia applications
from other traditional applications. The Real-Time Mach
kernel [19] supports many primitives for constructing pre-
dictable and dynamic real-time applications. These primi-
tives include a wide choice of real-time scheduling policies
(including fixed priority scheduling, rate-monotonic

scheduling and earliest deadline scheduling), periodic and
aperiodic real-time threads with the notion of deadlines and
handlers for deadline misses, real-time synchronization
primitives[12] and real-time inter-process communication
primitives which support priority inheritance [15], virtua
memory wiring, a real-time shell and a network protocol
server, a processor reserve abstraction, an integrated tool set
for schedulability analysis and real-time monitoring of
scheduling decisions[2], and real-time X 11 windowing ser-
vices[10]. In this paper, we build upon the processor
reserve abstraction to provide dynamic quality of service
support, and to predict and achieve end-to-end delays in
distributed multimedia applications.

1.1. Processor Reservesin Real-Time Mach

The Real-Time Mach microkernel supports an abstraction
called processor capacity reserves[9] which alows ap-
plication threads to specify their CPU requirements in terms
of their timing constraints:

» The kernel performs admission control using a specifica-
tion that consists of required CPU usage per specified
interval (such as 10 ms every 50 ms, or 20 ms every 60
ms).

» The kernel scheduler schedules application threads such
that these timing constraints are satisfied.

« The kernel alows multiple threads (possibly from dif-
ferent tasks) to be bound to the same reserve.

» The kernel enforces that application threads bound to a
reserve specification cannot disrupt the timing behavior
of other applications. Thisis achieved by ensuring that
only the reserve specification is guaranteed by the ker-
nel, and beyond the stated usage level, the kernel can
suspend or execute the demanding application threads at
low priority. Such kernel enforcement of each reserve
provides a temporal protection barrier between applica-
tions, a temporal domain analogue to the address space
protection of processesin the spatial domain [9].

Real-time applications with reserves and non-real-time
applications which do not need guarantees reserves can
co-exist comfortably. Applications without reserves are
implicitly bound by the kernel to a default reserve,
which is scheduled only where there are no other threads
bound to reserves ready to run.



» System calls are available to provide feedback to ap-
plications about the recent usage and guaranteed infor-
mation of various reserves. Since the kernel must
monitor the execution time of threads to enforce
reserves, it provides a built-in framework for measuring
the amount of time spent by threads, overhead and CPU
idleness. The CPU idleness is charged to a kernel-
defined idle reserve.

* Reserve parameters can be dynamically adjusted subject
to the admission control policy. The timing behavior of
reserved applications can therefore be changed dynami-
caly.

These features of the processor reserve abstraction were
intended to provide a simple yet powerful set of
mechanisms for use by real-time and multimedia applica-
tions in a context where non-real-time applications may
also co-exist. This abstraction has been tested previously in
stand-alone applications such as a video viewer which reads
afile into memory in non-real-time (background) mode and
then displays framesin real-time mode.

1.2. Related Work

Software developers have written many multimedia ap-
plications that run acceptably on general purpose operating
systems as long as no other programs compete for system
resources|[1, 5, 14, 18]. With additional real-time operating
system support to carefully manage operating system
resources, these applications could run even with competi-
tion.

Many researchers in the distributed real-time multimedia
community have turned their attention to end-to-end perfor-
mance guarantees which ultimately include network com-
munication and end-system resource management (includ-
ing, but not limited to, CPU, network protocol stack,
memory, file system or server). Much research has been
done on the networking issues, [4], [7] [22] to name a few,
in which specific assumptions are made about the end-
points of the distributed computation. As that work ma-
tures, attention is turning to issues of end-system control as
well [21].

Jeffay et al. [6] employ hard real-time scheduling theory in
a specialized micro-kernel to address timing issues related
to different stages of live video and audio processing.
Robin et al.[16] designed a system based on Chorus
[3] micro-kernel that addresses both the network and end
host QOS control. The system uses an earliest-deadline-
first scheduling policy and a time-line-based admission test
for "guaranteed class' threads.

Nahrstedt and Smith [11] used AIX for their telerobotic ap-
plication and showed that the AIX real-time priorities are
not enough to control protocol task behavior when used for
implementation of rate-monotonic or deadline-based
scheduling, unless severe restrictions are made which in-
cludes only one user allowed, one multimedia application

running on the RS/6000, application/transport protocols im-
plemented in a single user process with real-time priority
etc. "Only with these restrictions satisfied can we map
rate-monotonic scheduling onto the real-time priority
scheme of AlIX to provide (approximate) predictability for
guaranteed services' [11].

1.3. Organization of the Paper

The rest of this paper is organized as follows. In Section 2,
we outline the objectives of a dynamic QOS server on top
of RT-Mach and describe its architecture. In Section 3, we
describe a real distributed multimedia application called
RT-Phone. In Section 4, we apply the reserve and QOS
abstractions to RT-Phone. We also derive the predicted
end-to-end delay that must be guaranteed by the use of
reserves. A new concept hamed continuous thread of con-
trol is introduced to bundle many threads to a single
reserve, and a multi-phase protocol to coordinate two QOS
servers is presented. We aso provide performance num-
bers from RT-Phone to demonstrate that we do satisfy the
predicted end-to-end application delay. Finaly, Section 5
presents a summary of the lessons that we learned based on
RT-Phone and our experiments.

2. Dynamic Quality of Service Control

The relatively simple mechanisms associated with the
reserve mechanism are designed to be basic building blocks
that can be used to construct more powerful user-level
schemes. Real-time and multimedia applications on RT-
Mach cannot be assumed to be static in nature. Thus, we
must allow a dynamic mix of concurrent rea-time and mul-
timedia applications whose timing requirements not only
vary widely but can also change during run-time. Instead
of each application designing its own scheme(s) to use the
kernel reserve support, a consistent framework that lays out
the ground rules for cooperation and coordination between
various applications is highly desirable. Based on this
motivation, we propose a dynamic user-level QOS server
with two specific requirements. First, it must be able to
meet the timing requirements of each application independ-
ent of the behavior of other applications. Second, it must be
able to let an application dynamically adapt its own be-
havior based on its own internal requirements, user input
and/or the total 1oad on the system.

2.1. Quality Management and its Implications to
Systems Support

We summarize our approach to quality management as fol-
lows. The "quality" of an application can ultimately be
defined only by the application in concern. For example,
one recording application may emphasize the reception of
all incoming audio packets, another interactive application
may emphasize lower jitter and yet another may emphasize
very low end-to-end delay. An application-independent
kernel can therefore cannot institute direct support for all
possible notions of quality. However, application quality
requirements can and in practice are eventually translated to



the demands that they place on system resources. From a
kernel’ s perspective, therefore, we strive to support flexible
and powerful mechanisms which can support variations in
the resource requirements of various applications, and also
dynamic quality changes that may be required of individual
applications.

The key theme behind our resource management approach
is not unlike that behind the reserve abstraction. We aim to
provide a 2-way mechanism between the application and
the system layer wherein the application can flexibly
specify its requirements to the system layer, and in turn, the
system layer can provide accurate and dynamic feedback on
the state of the application’s resources individually and
with respect to the other applications that are co-resident.
The QOS server we describe next is based on this primary
theme.

2.2. The QOS Server

The architecture of the QOS server is presented in Figure
2-1. Our implementation currently assumes that applica-
tions are cooperative rather than malicious in naturel.

1/ Admission
Control
Client
Quality Attributes
Database

Real-Time Mach

Figure2-1: The Architecture of the Dynamic QOS Server.

The QOS server is based on the following complementary
aspects:

* QOS attributes are used by application threads to
specify their acceptable quality levels to the QOS server.

« An application can choose from one of many quality
adjustment policies that the QOS server can use on it if
the quality guarantee given to the application has to be

1This assumption can be eliminated by forcing the QOS server to be the
sole interface to the kernel’s reservation mechanisms, similar to the
user-level UX server on Mach.

upgraded or downgraded. In other words, this deter-
mines how an application wants to be treated when its
current resource allocation has to be altered. Included in
this policy choice is an application quality adjustment
priority which determines the order by which the QOS
server selects the beneficiary (victim) of a server deci-
sion to upgrade (downgrade) the quality of one or more
applications.

* One of many admission control adjustment policies is
used by the QOS server to admit as many new applica-
tion requests as possible without violating the needs of
currently registered applications.

« One of many overrun control policies is used by the
QOS to sdtisfy the needs of registered applications
whose current CPU demand exceeds their actual alloca
tion. This is done by the QOS server exploiting the
slack that may be available from applications not using
their current resource allocation.

These components of the QOS server are described in
greater detail next.

2.3. QOS Attributes

Application threads can submit requests to the QOS server
for resource allocation specifying QOS attributes. The ker-
nel reservation mechanism requires a fixed (worst-case)
computation time and a fixed period, but the QOS server
relaxes this constraint to be more flexible and dynamic.
QOS attributes include the minimum, maximum and most-
desired levels of the computation time as well as the min-
imum, maximum and most-desired levels of the period. In
other words, if an application chooses arange of acceptable
computation times (or periods), the QOS server is free to
pick alegal value in this range. The QOS server tries to
provide to each application the maximum quality value in
this range, but will not go below the minimum requested
value (once an application is admitted).

2.4. Quality Adjustment

A quality adjustment policy for each request indicates how

the QOS server should pick from the possibly wide range of

possibilities for the 2-tuple {computation time, period}

specified in an application’s QOS attribute:

¢ An Adjust-Computation-Time-First policy adjusts the
computation time first keeping the period constant (later
adjusting  the  period if needed). A
Keep-Period-Constant policy is obtained by specifying
the minimum, maximum and desired values of the
period to be the same. This option can be utilized by
applications which can pick from different algorithms to
process their data (e.g. choose a simple but less accurate
algorithm versus a complex but more accurate algo-
rithm), or pick different paths of the same agorithm
based on the available time (e.g. choose not to decode
some blocks in JPEG decoding of avideo frame).

e An Adjust-Period-First policy adjusts the period first



keeping the computation time constant (later adjusting
the  computation time if  needed). A
Keep-Computation-Time-Constant policy is obtained by
the application by specifying the minimum, maximum
and desired values of the computation time to be the
same. This policy can be useful for applications which
can tolerate changes to their rate of execution but not
their computation time per instance (e.g., capture avideo
frame and compress it using JPEG but the rate of cap-
ture can be varied).

* A Keep-Reservation-Constant policy is obtained by
specifying the minimum, maximum and desired values
of the computation time to be the same, and similarly for
the period.

* A Sep-wise Adjustment policy is available for the com-
putation time (period) in which the computation time
(period) will be adjusted only in discrete steps, the size
of which is specified by the application.

« A Negotiation Poalicy tells the QOS server to notify the
client when an adjustment needs to be made (along with
information about the maximum available reservation at
the time) and the client can negotiate the computation
time and reservation parameters of the new adjustment.
This policy leaves the actual choice of resource aloca
tion parameters to the application and can therefore be
used by those applications which cannot be satisfied by
any of the other policies. This policy is particularly
useful for real-time applications such as feedback con-
trol, where controllers may only be defined in the ap-
plication for some specific values of the period?.

The chosen quality adjustment policy for an application is
applied when the QOS server decides to alter its resource
alocation. Such decisions are made when the server ex-
ercises its admission control policy and dynamic quality
control policy. These are discussed in subsequent sections.

In addition to the above quality adjustment policies, a
quality adjustment priority associated with each reserve
specifies the global priority at which the application’s
quality will be adjusted. This means that if adjustments to
reservations alocated to applications were to be made by
the QOS server, an application with a lower adjustment
priority would be upgraded after (and downgraded before)
an application with a higher adjustment priority.

An application with reserves can submit a dynamic on-line
reguest to change its prior status, requesting a higher alloca-
tion and/or changing its quality adjustment policy. The
request is not guaranteed to be honored, however. This
allows a QOS client to change its behavior dynamically
based on user input (or changing internal application re-
quirements).

2A feedback control application, for example, can use a PD controller at
some pre-defined high frequencies, a PID controller at some pre-defined
medium frequencies, and a fuzzy/adaptive controller at relatively low
frequencies.

2.5. Admission Control Policies
The QOS server tries to provide the maximum reservation
available in the system based on the application require-
ment and the system load at the time of request. The reser-
vation parameters of existing QOS clients may be modified
if necessary to admit a new client. An admission control
policy allows the QOS server to decide whether to accept a
new request and at what level of quality. Six different
admission control policies are available:
* New-Minimum, Existing-Minimum: Both incoming and
current applications can be pushed down to their min-
imum acceptable quality levels.

* New-Minimum, Existing-Desired: The incoming applica-
tion can be pushed down to its minimum quality level
but current applications must not be pushed farther
below their desired levels.

* New-Minimum, Existing-Actual: The incoming applica-
tion can be pushed down to its minimum quality level
but current applications must not be pushed farther
below their current allocation levels.

e The remaining 3 policiess, New-Desired /
Existing-Minimum, New-Desired / Existing-Desired and
New-Desired / Existing-Actual, are counterparts to the
above 3 but the incoming request must be accepted at its
desired quality level.

2.6. Dynamic Quality Control Policies

The QOS server polls the kernel at periodic intervals (cur-
rently every 5 seconds) to determine how much of each
guarateed reservation is being under-used (signaling an
under-run), and how many threads have their usage exceed-
ing their reservations (signaling an over-run which is ex-
ecuted in background mode and charged to a default
reserve in the current version of RT-Mach). Based on this
information, the QOS server may decide and notify clients
that their reservations are being reduced or increased so that
they can adapt their behavior. One of four different
overrun control policies can be chosen. These policies are
similar in nature to the admission control policies discussed
above.

2.7. The QOS Server Threads

Asillustrated in Figure 2-1, the QOS server implementation
consists of 3 threads. The admission control thread deter-
mines if new QOS requests can be granted. The dynamic
quality control thread is the one which periodically checks
the kernel for status information regarding the reserve
usage of various registered applications. The display
thread is an X-client which graphically depicts the granted
reservations to QOS clients, the actual usage of reser-
vations, the quality adjustment policy for each QOS client,
and the admission and overrun policies of the QOS server
itself.



2.8. TheClient Interfaceto the QOS Server

QOS clients access the QOS server using library calls to
register/unregister their presence, as well as to request and
ater their quality attributes. The QOS server notifies each
QOS client of any changes in resource alocation using a
communication port registered specified by the application
at the time of registration.

3. The RT-Phone Teleconferencing Application
In order to study the necessity, sufficiency, power and per-
formance of the reservation and QOS mechanisms, we im-
plemented a distributed teleconferencing application across
the network. We describe this application named RT-Phone
below followed by a description of the application architec-
ture. Our QOS experiments with the application will be
described in the next section.

spk mic

Im Im IQ: Can Help Im

Figure 3-1: The RT-Phone user interface on starting up.

3.1. RT-Phone

RT-Phone presents a telephone-pad-like Motif-based
graphical interface running on top of RT-Mach. The initial
state when RT-Phone starts is presented in Figure 3-1. A
"caller" initiates communication with a remote workstation
running RT-Phone by first clicking on the "handset" as il-
lustrated in Figure 3-2. The "dialer", corresponding to
"Hostname" and other "speed-dia buttons', becomes en-
abled when the handset is "off the hook". The caller then
specifies a destination host (using a speed button or by
specifying a specific remote hostname in a dialog box), and
a connection request is sent to the remote machine. This
connection request is displayed on a "caller-id" window as
shown on the top right window in Figure 3-3. The callee
completes establishment of the two-way connection by
clicking on his’her "handset" button. At this point, a 2-way
audio conversation can take place on the network. A 2-way
real-time video stream can also be transmitted when the

From

Dial I Host Name
SpDial—lZl SpDial-1 |SpDial-2 SpDial-3

spk mic

Im lm IQ? CFn‘n Help Im

Figure 3-2: The RT-Phone user interface in the
"off-the-hook/ready-to-dial" state.

From

Dial

spk mic

Im lm IQ? Can Help Quit

Figure 3-3: The RT-Phone user interface after a network
phone connection is established.

connection gets established, but in this paper we shall con-
fine our discussion to the duplex audio streams only.

Controls are available for the user to set the volume level of
the speaker and/or the microphone, to block incoming con-
nection requests from specific hosts, mute microphone in-
put, to clear the "caller-id" field, and to modify the quality
of the audio streams transmitted (this will be discussed in
more detail in Section 4.5). These features are generally
only a subset of more sophisticated tools such as the Ether-
Phone system [20], and were custom-designed only to ex-
ercise relevant portions of our QOS and reservation
mechanisms.



3.2. The Architecture of the RT-Phone Application

From network

To network
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Real-Time Mach
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Figure 3-4: The Architecture of RT-Phone at
each end-point.

The architecture of RT-Phone at each node is presented in
Figure 3-4. It is in many ways similar to traditional
teleconferencing applications (for example, PictureTel,
"cu/c-me" on the Mac, [6, 20]) but it is also quite different
in many other ways. For example, a distinct user-level
audio server process hides the details of the system’s sound
card by providing a higher level interface. Processor
reserves provide a mutual temporal barrier between
RT-Phone and other applications. In addition, the same
processor reserve is applied across task boundaries.
Finally, we alow the quality of the audio streams to be
modified dynamically.

This application runs on Real-Time Mach on two 66Mhz
486DX processors networked using Ethernet. The dark
directional arrows of Figure 3-4 represent the data flow in
the application. A User-Level Audio Server (ULAS
[13] provides a high-level programming interface to audio
cards, by hiding the details and device driver calls for the
specific sound card in use. For example, in RT-Phone, we
use SoundBlaster-compatible Pro-Audio Spectrum 16
(PAYS) audio cards. This ULAS interface allows the choice
of an audio sampling rate, the choice between 8-bit samples
and 16-bit samples and the choice of a buffer size, which is
used to store audio samples until ready for input and output.
Three threads in the audio-server deal with control of these
configuration parameters, audio data input from the
microphone, and audio data output to the speaker respec-
tively.

Although the PAS card supports bi-directional audio (cap-

3The AudioFile utility supports asimilar server aswell.

ture and output), it cannot do both simultaneously (in
duplex mode). Hence, the user-level audio-servers can only
do either audio input or output a any given time. We
therefore use two PAS cards and two audio servers, one for
continuous audio sampling and another for continuous
audio output respectively. A periodic interrupt based on the
sampling rate and buffer size triggers the input audio server
to copy the buffer into its requesting client, an audio-send
thread within RT-Phone. A shared memory buffer is used
between the audio server and the RT-Phone thread. The
audio-send thread then transmits the data to the remote
callee across the network. An audio-receive thread receives
the audio data and outputs it to its speaker through the use
of the output audio-server. A mirror image of the same
streams transmits audio from the callee to the caller.

4. Reserves, QOS and End-to-End Delaysin
RT-Phone

In this section, we derive our predicted end-to-end delay of
the RT-Phone application described in the previous section.
We also describe the application of the reserve and dynamic
quality schemes to RT-Phone. Finally, we provide perfor-
mance measurements of RT-Phone which show that we
indeed satisfy the predicted end-to-end delays.

4.1. The Quality Parameter s of RT-Phone

There are five quality parameters associated with
RT-Phone: end-to-end delay, jitter, audio sampling rate,
audio sample size, and audio drop rate. In this paper, we
focus on making the audio drop rate being O by allocating
and guaranteeing necessary resources, and satisfying an ac-
ceptable end-to-end delay requirement for different values
of audio sampling rate, sample size and the value of T in the
pipeline stage. Based on requirements used in the
telephony domain, we require that all end-to-end delays be
less than 100 ms.

4.2. The Guaranteed End-To-End Delay

Processor 1

St 3
Q—=»{ sagel Stage2 | 09 >
T T Network T T
Delay

Figure4-1: The Audio Stream Pipeline Stagesin
the End-To-End Delay

The pipeline stages involved in the audio transmit path of
Figure 3-4 are illustrated in Figure 4-1. It consists of 5
stages:

« Stage 1 represents the filling of its DMA buffer by the

4Jitter control is a critical issue to be dealt with in this context, but is
beyond the scope of this paper.



(PAS) sound card. This delay is determined by the
parameters chosen for the sampling rate, sample size and
buffer size on the sound card.

« Stage 2 represents the "processing” of the data (receive
audio data from server and protocol processing for trans-
mit).

* Stage 3 represents the network propagation delay.

« Stage 4 represents the processing on the receiver side
(protocol processing for receive and send to PAS card
through the audio server).

* Finally, stage 5 is the actual playing back of the audio
samples by the hardware.

If T represents the hardware buffering delay for stage 1
(and the same for stage 5), we let stages 2 and 4 have the
worst-case timing constraint of T. This is done by assign-
ing reserves to these processor with the reserve period T
such that the kernel can guarantee that the processing in
these two stages is completed within T units. The end-to-
end delay for an audio sample is therefore given by

wor st—case end-to—end delay = 3T + network
propagation delay

It must be noted that the delay component 3T is not 4T.
Consider an audio sample which is sampled by the
hardware in Stage 1. This sample at offset t from the begin-
ning of the stage will be played at the same offset t in stage
5. The number of T stages inbetween these two pointsis 3
and not 4.

Since network communications is not a focus of this paper,
we use a dedicated network which results in negligible
propogation delay - e.g. atypical 256 bytes output every 16
ms at 16KHz sampling with 1 byte/sample takes 0.2 ms at
10 Mbps to transmit but take 16 msto collect.

4.3. Bundling of Threadsto a Reserve

The audio-send thread is normally blocked waiting for data
arrival from the audio-server. Consider the flow of control
from the arrival of the hardware "buffer full" interrupt
through the user-level audio-server to the audio-send
thread. Logically, a single consecutive action takes place
from the audio server which makes data available to the
audio-send thread, which then processes it and transmits it
across the network. Thetiming constraint is that this recep-
tion from hardware and succeeding transmission must com-
plete by the interval T.

We define the notion of a continuous thread of control as
comprising those segments of code where (a) the flow of
control is sequential and (b) a strict precedence constraint
exists between the segments. The former means that no
two segments can run concurrently. The latter means that a
segment can start only after, and soon after, its previous
segment (if any) has completed. These segments of code
can transcend task boundaries but not resource boundaries
such as a CPU. Under this definition, a norma OS thread

is always a continuous thread of control since the flow of
control is sequential - multiple portions of the thread cannot
be active at the same time.

This notion of a continuous thread of control is rather use-
ful in the context of a processor reserve which can be bound
to multiple threads simultaneously, as stated in Section 1.
All OS threads (or segments) comprising a continuous
thread of control typically have a single timing constraint
from the first segment to its last segment. A single proces
sor reserve may then be usefully bound to al OS threads
comprising the continuous thread of control, and the reserve
can be used to satisfy the timing constraint of that con-
tinuous thread of control.

Based on this notion, the input thread in the audio-server
and the audio-send thread are bound to the same reserve
with aperiod of T. Recall that T is determined by the sound
card configuration parameters sampling rate, sample size
and buffer size. Similarly, the audio-receive thread and the
output thread in the audio-server can be bound to another
reserve with a period of T'. Our reserve admission control
in RT-Mach uses results from real-time scheduling theory
[8] which can guarantee the timing constraints of tasks
with different periods and computation times. Hence, the
reserve period for one direction need not be the same as the
reserve period for the opposite direction. In other words,
the quality of the two output streams at the two speaker
devices can be completely independent of one another.

4.4. Performance M easur ements

We measured the end-to-end delays actually encountered in
RT-Phone to validate that the predicted delays are indeed
achievable by the application of reserves and the dynamic
QOS server. The measurement scheme and the actual
measurements are provided below.

RT-Mach PC
Measuring
End-to-End Delay

RT-Mach PC
running

runnin
J RT-Phone

RT-Phone

Network

Figure 4-2: Measurement of Audio End-to-End Delay

RT-Phone was run between two machines on a network as
illustrated in Figure 4-2. The end-to-end delay measure-
ments were made using a third machine. The measuring
machine generated a sharp sound pulse on one machine
running RT-Phone and then recorded the source pulse and
the transmitted output from the destination machine running



RT-Phone. By measuring the timestamp of the generated
sound and the timestamp at which the transmitted pulse is
heard, the end-to-end delay from the users's true reception
is determined to a very high degree of accuracy (within a
few ms). Note that the audio stream in the direction op-
posite to the direction being measured is active while the
measurement is being done but this is not illustrated in the
figure.

Figures 4-3 and 4-4 present measured performance numbers
from RT-Phone running on Real-Time Mach. Figure 4-3
presents the variation of the end-to-end delays between the
two conversation endpoints as the reservation period used
for processing the audio samplesis varied. Thisis repeated
for various audio sampling rates. Figure 4-4 presents the
change in the CPU load (on i486DX 66MHz PCs) as the
reservation period and the sampling frequencies are varied.
As can be expected, when the reservation period increases,
the end-to-end delay increases proportionally. It can aso
be seen that the worst-case end-to-end delay bound of
3*(Reservation Period) is satisfied. In fact, the plotted
numbers represent the best-case end-to-end delay given by
the sum of

» Thedelay tofill up the DMA buffer at the audio source,

« The processing time of the audio data buffer by the input
audio server and the audio send thread,

 The network propagation time,

» The processing time of the received audio data by the
audio receive thread and the output audio receiver, and
in addition,

* any preemption time from the audio stream for the op-
posite direction.
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Figure 4-3: The End-To-End Delay w/ varying reservation
periods and audio sampling rates.

As the audio sampling rate increases, the processing times
increase slightly resulting in a corresponding increase in the
end-to-end delay. However, the most significant overhead
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Figure4-4: The CPU Load with different reservation
periods and audio sampling rates.

for threads with small periods is packet sending and receiv-
ing overhead. In addition, for small reservation periods,
timers are set and reset frequently resulting in higher over-
head. Finally, context-switching overhead increases with
sampling rate.

One can draw the following conclusions from the perfor-
mance numbers. First, for agiven reservation period in use,
the audio sampling rate has very little impact on both the
end-to-end delay and the CPU load. For example, when the
reservation period used is 24 ms, the end-to-end delay is 38
ms and 43 ms for 8 KHz sampling and 24 KHz sampling
respectively, and the total CPU load increases from 24% to
28%. This testifies to the fact that data processing delays
(including communication packet processing) dominate
data sizes. Secondly, the CPU load increases non-linearly
with shorter reservation periods as seen in Figure 4-4, in-
dicating that the much shorter end-to-end delays (below the
knee of the curve around 25 ms) are obtained at a dis-
proportionately higher cost. One would like to be towards
the left-end of Figure 4-3 and the right-end of Figure 4-4.
A reasonable compromise for the current hardware con-
figuration lies around a reservation period of 24 ms.

4.5. QOS Interface for Changing Quality
Par ameter s Dynamically

RT-Phone also has a user-interface to change the quality of
the received audio stream (from the remote participant) and
isillustrated in Figure 4-5. When such a quality change is
requested, the QOS manager of both the local and remote
nodes are contacted to modify the reservations they need
for the new quality setting. If granted, the audio-server is
requested to change to the new settings. The sender must
upgrade quality only after the receiver upgrades its reser-
vation (and be ready for the added incoming traffic). The
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Figure 4-6: The Multi-Phase Protocol to dynamically
adjust QOS during tel econferencing

actual quality change must be effected by a multi-phase
protocol illustrated in Figure 4-6. Similarly, if the sender
degrades quality, the receiver must downgrade its reser-
vation only after the sender does.

Many subtleties underlie such dynamic transitions of net-
work traffic and processing requirements. For example, it
is possible that the old resource allocation and the new
alocation are completely schedulable (i.e. al their timing
constraints can be satisfied with these resources) indepen-
dently, but timing constraints can be violated during the
transition [17]. While this may not be a major concern in
non-critical  multimedia applications, this loss of
schedulability must not lead to all subsequent deadlines to
be missed or synchronicity to be last (say between indepen-
dently arriving audio and video streams). Of critical impor-
tance are the times at which changes to reservation come
into effect, the times at which changes to audio card set-

tings come into effect and the need for continued
synchronization between the sender and receiver.

5. Lessons L earned and Future Work

We have learnt a number of lessons based on our ex-
periences with the RT-Phone application in the context of
support for processor reservation and dynamic QOS control
in RT-Mach. The current processor reserve mechanism
seems to provide a sufficiently general meanss that can sup-
port both dynamic real-time and multimedia applications.
However, the programming abstraction may have to be
raised with "middleware libraries' which map application-
level QOS parameters (such as sampling rate) to kernel-
level/QOS-server-level parameters (such as computation
time and period). The reserve enforcement already yields a
built-in framework for measuring computation time (which
is dependent on the actual hardware being used). The
period must be determined based on the end-to-end delays
of the application. More precise control over when a reser-
vation change will be effected would be very desirable. In
addition, mechanisms to synchronize the "start times' of
reserves which are active in different processors may be
critical for networked applications particularly when net-
work load can be variant.

Our future work includes extending the reserve abstraction
to address the above requirements and to other resources
such as filesystems. A more general set of protocols is
needed to coordinate changes in reserves across processors
for networked applications. We are currently looking at an
audio-mixing server to combine multiple incoming audio
streams to a single output device, and its complexity in
terms of reservation requirements is much higher compared
to an audio-server with a single client. In addition, we are
yet to test our QOS framework with multiple clients each
with a different kind of dynamic quality change require-
ments.
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