A Flexible Learning System for “Wrapping” Tables and Lists
or
How to Write a Really Complicated Learning Algorithm
Without Driving Yourself Mad

William W. Cohen
Matthew Hurst
Lee S. Jensen

WhizBang Labs – Research
A Flexible Learning System for “Wrapping” Tables and Lists
or
How to Write a Really Complicated Learning Algorithm
Without Driving Yourself Mad

William “Don’t call me Dubya” Cohen (me)
Matthew Hurst
Lee S. Jensen

WhizBang Labs – Research
Learning “Wrappers”

- A “wrapper” is a program that makes (part of) a web site look like (part of) a database.

 For instance, job postings on microsoft.com might be converted to tuples from a relation:

<table>
<thead>
<tr>
<th>Job title</th>
<th>Location</th>
<th>Employer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C# software developer</td>
<td>Seattle, WA</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Receptionist</td>
<td>Seattle, WA</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Research Scientist</td>
<td>Beijing, China</td>
<td>Microsoft–Asia</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Learning “Wrappers”

• Reasons for wanting wrappers:
 – Collect training data for an IE system from lots of websites.
 – IE from not-too-many websites $O(10^2-10^3)$
 – Boost performance of IE on “important” sites.

• Ways of creating wrappers:
 – Code them up (in Perl, Java, WebL, . . . ,)
 – Learn them from examples
What’s Hard About Learning Wrappers

• A good wrapper induction system should generalize across future pages as well as current pages.

WheezeBong.com:
Contact info
Currently we have offices in two locations:

• Pittsburgh, PA
• Provo, UT
What’s Hard About Learning Wrappers

- A good wrapper induction system should generalize across future pages as well as current pages.
- Many generalizations of the first two examples are possible, but only a few will generalize.
- Prior solutions: hand-crafted learning algorithms and carefully chosen heuristics.

WheezeBong.com:
Contact info
Currently we have offices in three locations:
- Pittsburgh, PA
- Provo, UT
- Honololu, HI
Our Approach to Wrapper Induction

• **Premise:** A wrapper learning system needs careful engineering (and possibly re-engineering).
 – 6 hand-crafted languages in WIEN (Kushmeric AIJ2000)
 – 13 ordering heuristics in STALKER (Muslea et al. AA1999)

• **Approach:** architecture that facilitates hand-tuning the “bias” of the learner.
 – Bias is an ordered set of “builders”.
 – Builders are *simple* “micro-learners”.
 – A single master algorithm co-ordinates learning.
Our Approach: Document Representation*

Structured documents (e.g. HTML) are labeled trees (DOMs).

*Slightly over-simplified...
Our Approach: Document Representation

Imagine the DOM extended with a new node for each token of text...
A “span” is defined by a start node and an end node...
Our Approach: Document Representation

...and the start node and end node might be identical (a “node span”).
Our Approach: Representing Extractors

- A **predicate** is a binary relation on spans: $p(s_1, s_2)$ means that s_2 is extracted from s_1.

- Membership in a predicate can be tested:
 - Given (s_1, s_2), is $p(s_1, s_2)$ true?

- Predicates can be **executed**:
 - $\text{EXECUTE}(p, s_1)$ is the set of s_2 for which $p(s_1, s_2)$ is true.
Example Predicate

Example:

- \(p(s_1, s_2) \) iff \(s_2 \) are the tokens below an \texttt{li} node inside \(s_1 \).
- \textsc{EXECUTE}(p, s_1)\ extracts
 - “Pittsburgh, PA”
 - “Provo, UT”

WheezeBong.com:
Contact info

Currently we have offices in two locations:

- Pittsburgh, PA
- Provo, UT
Our Approach: Representing Bias

- The hypothesis space of the learner is built up from simple sublanguages.

- L_{bracket}: p is defined by a pair of strings (ℓ, r), and $p_{\ell,r}(s_1, s_2)$, is true iff s_2 is preceded by ℓ and followed by r.

 $$\text{EXECUTE}(p_{\text{in,locations}}, s_1) = \{ \text{“two”} \}$$

- L_{tagpath}: p is defined by $\text{tag}_1, \ldots, \text{tag}_k$, and $p_{\text{tag}_1,\ldots,\text{tag}_k}(s_1, s_2)$ is true iff s_1 and s_2 correspond to DOM nodes and s_2 is reached from s_1 by following a path ending in $\text{tag}_1, \ldots, \text{tag}_k$.

 $$\text{EXECUTE}(p_{\text{ul,li}}, s_1) = \{ \text{“Pittsburgh, PA”, “Provo, UT”} \}$$
Our Approach: Representing Bias

For each sublanguage L there is a builder \mathcal{B}_L which implements a few simple operations:

- LGG(positive examples of $p(s_1, s_2)$): least general p in L that covers all the positive examples.

 For L_{bracket}, longest common prefix and suffix of the examples.

- REFINE(p, examples): a set of p’s that cover some but not all of the examples.

 For L_{tagpath}, extend the path with one additional tag that appears in the examples.
Our Approach: Representing Bias

Builders can be composed: given B_{L_1} and B_{L_2} one can automatically construct

- a builder for the conjunction of the two languages, $L_1 \wedge L_2$

- a builder for the composition of the two languages, $L_1 \circ L_2$

Requires an additional input: how to decompose an example (s_1, s_2) of $p_1 \circ p_2$ into an example (s_1, s') of p_1 and an example (s', s_2) of p_2.

So, complex builders can be constructed by combining simple ones.
Example of combining builders

• Consider composing builders for L_{tagpath} and L_{bracket}.

• The LGG of the locations would be $p_{\text{tags}} \circ p_{\ell,r}$
 where
 - $\text{tags}=\text{ul,li}$
 - $\ell=\text{“(”}$
 - $r=\text{“)”}$

Jobs at WheezeBong:

To apply, call: 1-(800)-555-9999

• Webmaster (New York). Perl,servlets a plus.

• Librarian (Pittsburgh). MLS required.

• Ditch Digger (Palo Alto). No experience needed.
Limitations of DOMs

- The “real” regularities are at the level of the visual appearance of the document.

- What if the underlying DOM doesn’t show the same regularities?

 \(<i>Provo</i> vs. <i>Pittsburgh</i>\)
Limitations of DOMs

<table>
<thead>
<tr>
<th>“Actresses”</th>
<th>Lucy</th>
<th>Lawless</th>
<th>images</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angelina</td>
<td>Jolie</td>
<td>images</td>
<td>links</td>
<td></td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Singers”</th>
<th>Madonna</th>
<th>images</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brittany</td>
<td>Spears</td>
<td>images</td>
<td>links</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

How can you easily express “links to pages about singers”?
1. Classify HTML tables nodes as “data tables” or “non-data tables”.
 On 339 examples, precision/recall of 1.00/0.92 with Winnow and features …

2. Render each data table.

3. Find the logical cells of the table.

4. Construct geometric model of table: an integer grid, with each logical cell having co-ordinates on the grid.

5. Tag each cell with (some aspects) of its role in the table.
 • Currently, “cut-in cells”.
Fancy Builders: Understanding Table Rendering

<table>
<thead>
<tr>
<th>“Actresses”</th>
<th>Lucy</th>
<th>Lawless</th>
<th>images</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>cutin,1.1-1.1</td>
<td>2.1-2.1</td>
<td>2.2-2.2</td>
<td>2.3-2.3</td>
<td>2.4-2.4</td>
</tr>
<tr>
<td>Angelina</td>
<td>Jolie</td>
<td>images</td>
<td>links</td>
<td></td>
</tr>
<tr>
<td>3.1-3.1</td>
<td>3.2-3.2</td>
<td>3.3-3.3</td>
<td>3.4-3.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Singers”</th>
<th>Madonna</th>
<th>images</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>cutin,4.1-4.1</td>
<td>5.1-5.2</td>
<td>5.3-5.3</td>
<td>5.4-5.4</td>
</tr>
<tr>
<td>Brittany</td>
<td>Spears</td>
<td>images</td>
<td>links</td>
</tr>
<tr>
<td>6.1-6.1</td>
<td>6.2-6.2</td>
<td>6.3-6.3</td>
<td>6.4-6.4</td>
</tr>
</tbody>
</table>

Table builders:

- Element name + words in last cut-in (e.g., “table cells where the last cut-in contains ‘singers’”)
- “Tagpath” builder extended to condition on (x,y) co-ordinates (e.g., “table cells with y-coordinates ‘3-3’ inside . . .”)

21
The Learning Algorithm

Inputs:

- an ordered list of builders B_1, B_k.
- positive examples (s_1, s_2) of the predicate to be learned
- information about what parts of each page have been completely labeled (implicit negative examples)
The Learning Algorithm

Algorithm:

- Compute LGG of positive examples with each builder B_i.
- If any LGG is consistent with the (implicit) negative data, then return it*.
- Otherwise, execute the best* LGG to get explicit negative examples, then apply a FOIL-like learning algorithm, using LGG and REFINE to create “features*”.

* Break ties in favor of earlier builders. With few positive examples there are lots of ties.
Experimental results

<table>
<thead>
<tr>
<th>Problem#</th>
<th>WIEN(=)</th>
<th>STALKER(≈)</th>
<th>WL²(=)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>46</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S2</td>
<td>274</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>S3</td>
<td>∞</td>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>S4</td>
<td>∞</td>
<td>∞</td>
<td>4</td>
</tr>
</tbody>
</table>

Examples needed to learn accurate extraction rules for all parts of a wrapper for WIEN (Kushmerick ’00), STALKER (Muslea, Minton, Knoblock ’99), and the WhizBang Labs Wrapper Learner (WL²).
Experimental results

<table>
<thead>
<tr>
<th>Problem</th>
<th>WL2</th>
<th>Problem</th>
<th>WL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOB1</td>
<td>3</td>
<td>CLASS1</td>
<td>1</td>
</tr>
<tr>
<td>JOB2</td>
<td>1</td>
<td>CLASS2</td>
<td>3</td>
</tr>
<tr>
<td>JOB3</td>
<td>1</td>
<td>CLASS3</td>
<td>3</td>
</tr>
<tr>
<td>JOB4</td>
<td>2</td>
<td>CLASS4</td>
<td>3</td>
</tr>
<tr>
<td>JOB5</td>
<td>2</td>
<td>CLASS5</td>
<td>6</td>
</tr>
<tr>
<td>JOB6</td>
<td>9</td>
<td>CLASS6</td>
<td>3</td>
</tr>
<tr>
<td>JOB7</td>
<td>4</td>
<td>median</td>
<td></td>
</tr>
<tr>
<td>median</td>
<td>2</td>
<td>median</td>
<td>3</td>
</tr>
</tbody>
</table>

WL2 on representative real-world wrapping problems.
Experimental results

WL2 on representative real-world wrapping problems.
Experimental results

Variants of WL^2 on real-world wrapping problems: average accuracy versus number of training examples.
Conclusions/Summary

• Wrapper learners need tuning. Structuring the bias space provides a principled approach to tuning.

• “Builders” let one mix generalization strategies based on different views of the document:
 – as DOM
 – as sequence of tokens
 – as sequence of rendered fragments of text
 – as geometric model of table
 – …

• Performance seems to be better than previous systems.