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Abstract

Irregular applications based on sparse matrices are at the
core of many important scientific computations. Since the
importance of such applications is likely to increase in the
future, high-performance parallel and distributed systems
must provide adequate support for such applications. We
characterize a family of irregular scientific applications and
derive the demands they will place on the communication
systems of future parallel systems. Running time of these
applications is dominated by repeated sparse matrix vec-
tor product (SMVP) operations. Using simple performance
models of the SMVP, we investigate requirements for bisec-
tion bandwidth, sustained bandwidth on each processing
element (PE), burst bandwidth during block transfers, and
block latencies for PEs under different assumptions about
sustained computational throughput. Our model indicates
that block latencies are likely to be the most problematic
engineering challenge for future communication networks.

1 Introduction

The peak performance of the commodity processors in
modern parallel systems is doubling every couple of years.
Clearly, communication performance needs to improve as
processor performance increases, but the question is how
much and in what respects. It is crucial to understand
communication requirements because some parts of a high-
performance communication system cannot be commodity,
and will therefore be expensive.

In general it is important to understand the communi-
cation requirements of real applications [5, 10], and these
requirements are especially difficult to characterize for the
important class of irregular scientific applications that ma-
nipulate sparse matrices. Such applications typically model
natural phenomena like the flow of air over a wing or the
distribution of stresses and strains in a bridge, and tend to
be large, complex, and poorly understood.

This paper addresses the following question: As micro-
processors in parallel systems continue to improve, how
much must communication systems improve to run irreg-
ular applications efficiently? Specifically, we address this
question for the Quake applications, a family of 3D unstruc-
tured finite element simulations. The Quake applications,
described in Section 2, simulate the motion of the ground
during strong earthquakes. They were developed as part of
an ongoing project at Carnegie Mellon to model earthquakes
in the Los Angeles basin and other alluvial valleys [2].

Running time of the Quake applications is dominated
by a sparse matrix-vector product (SMVP) operation that is
repeated thousands of times, and the SMVP is the only op-
eration besides I/O that requires the transfer of data between
processors. Thus, as modelers we can focus on understand-
ing the behavior of the SMVP operation and abstract away
much of the complexity of the application. We derive a sim-
ple performance model for operations that consist of sepa-
rate computation and communication phases—particularly
the SMVP—in Section 3.

In Section 4 we apply this model to derive requirements
for (1) bisection bandwidth, (2) sustained communication
bandwidth per processing element (PE), and (3) block trans-
fer latency and burst bandwidth, under various assumptions
about efficiency and local MFLOP rates. (We use processing
element instead of the common term node to avoid confusion
with the nodes of finite element meshes.)

Our detailed characterizations of the requirements of the
Quake applications reveal that bisection bandwidth is not
important for irregular finite element applications; band-
width at each PE is what matters. For systems with a
sustained computational rate of 200 MFLOPS, PEs will
need about 300 MBytes/sec of sustained bandwidth and
600 MBytes/sec of burst bandwidth to run irregular codes
with good efficiency.

Our work is similar in spirit to that of Cypher, Ho, Kon-
stantinidou, and Messina [5], who characterize eight regular
and irregular scientific applications in terms of memory, pro-
cessing, communication, and I/O requirements, and build
scalability models for three of the simpler regular applica-



tions. However, our approach is different in that our goal is
depth rather than breadth. We provide a detailed characteri-
zation for a specific family of irregular applications that are
real (in the sense that people really care about the results that
the Quake applications compute), that we understand com-
pletely, that we have complete control over, and that we can
make arbitrarily large or small by adjusting the frequency of
ground motion.

To show that the generality of our model seems to ex-
tend beyond this single family of irregular applications, we
observe that there is some evidence that the Quake applica-
tions are typical of unstructured finite element simulations.
For example, the EXFLOW application from Cypher et
al. [5] is a 3D unstructured finite element program that sim-
ulates a fluid dynamics problem on 512 PEs. Interestingly,
EXFLOW has nearly identical computational properties as
a similarly sized Quake application (sf2/128, which resolves
a wave with a two-second period on 128 PEs). EXFLOW
and Quake each require about 2 MBytes of data on each
PE. The communication volume/MFLOP is 144 KBytes for
EXFLOW, vs. 155 KBytes for Quake. The average number
of messages/MFLOP is 66 messages for EXFLOW, vs. 60
messages for Quake. And the average message size is 2.2
KBytes for EXFLOW, vs. 3.6 KBytes for Quake.

These two unstructured finite element applications are
from two different scientific domains, yet each has similar
computational properties and differs from regular applica-
tions in similar ways. Irregular finite element applications
like EXFLOW and Quake have an average total commu-
nication volume similar to that of the regular applications
studied earlier by Cypher et al. [5], but they transfer more
messages having a smaller average size than most of those
regular applications. Perhaps our most troublesome con-
clusion is that because block transfers between PEs tend to
be small even for large irregular applications, block latency
costs cannot be amortized by large messages, and commu-
nication latency will need to be a central focus of future
efforts to engineer effective communication networks and
software.

2 The family of Quake applications

The Quake applications are unstructured finite element
codes that were developed to predict ground motion in the
San Fernando Valley of Southern California during earth-
quakes [2]. There are four Quake applications, denoted
sf10, sf5, sf2, and sf1. The “sf” is an abbreviation for San
Fernando, and the number indicates the period (in seconds)
of the highest frequency wave that the simulation is able to
resolve. For example, sf10 resolves waves with 10 second
periods, sf5 resolves waves with 5 second periods, etc.

Each Quake application consists of (1) a three-dimen-
sional unstructured finite element model of the ground

beneath San Fernando, and (2) a parallel finite element
program that simulates the propagation of seismic waves
through the model for 60 seconds of simulated time.

2.1 Quake finite element models

Each Quake application employs a 3D unstructured mesh,
composed of thousands or millions of tetrahedra (i.e., pyra-
mids with triangular bases), and models a volume of earth
roughly 50 km x 50 km x 10 km in size (Figure 1). Each
tetrahedron is called an element, and the vertices of the tetra-
hedra are called nodes. Some finite element simulations use
structured meshes constructed from regular grids; however,
the Quake applications require unstructured meshes, which
can accommodate the wildly varying density of the soils
in the valley. To ensure that the simulation is numerically
stable, the size of elements in any region of the mesh must
be matched to the wavelength of ground motion, which is
shorter in softer soils and longer in hard rock. Thus, softer
soils need a higher density of smaller elements.

Figure 1. Finite element mesh for the sf10
model of the San Fernando Valley.

Figure 2 records the sizes of the San Fernando meshes.
When the wave’s period is halved, its frequency doubles,
and the number of nodes increases by a factor of nearly
eight—a factor of two for each of three dimensions. As a
general rule, for each node in the mesh, a simulation uses
about 1.2 KByte of memory at runtime to accommodate the
storage of several vectors and sparse matrices. For example,
sf2 requires about 450 MBytes of memory at runtime.

2.2 Parallel finite element simulations

During each of 6000 time steps, a Quake finite element
simulation executes a sparse matrix-vector product (SMVP)
operation of the form , where and are vectors of



Number of sf10 sf5 sf2 sf1

nodes 7,294 30,169 378,747 2,461,694
elements 35,025 151,239 2,067,739 13,980,162
edges 44,922 190,377 2,509,064 16,684,112

Figure 2. Sizes of the Quake meshes.

length 3 (here is the number of nodes), and is a sparse
3 3 stiffness matrix. Because an explicit time-stepping
method is used, there are no other parallel operations (such
as dot products or preconditioning). The vectors and
have length 3 because each vector represents three degrees
of freedom— , , and displacements—for each node of
the mesh. can be likened to an adjacency matrix of the
nodes of the mesh; contains a 3 3 submatrix for each
pair of nodes that are connected by an edge of the mesh
(including self-edges). The stiffness matrix is extremely
sparse; each node is connected to an average of 13 neighbors
(in addition to itself), so each row of contains an average
of 14 3 42 nonzero floating point numbers [15].

The simulations are parallelized using Archimedes, a
domain-specific tool chain for finite element problems [2,
18]. To generate a simulation that will run on PEs,
Archimedes partitions the mesh into disjoint sets of el-
ements. Each set is called a subdomain; a one-to-one map-
ping is established between PEs and subdomains. The pro-
gram that partitions each mesh into subdomains is based on a
recursive geometric bisection algorithm [12] that divides the
elements equally among the subdomains while attempting to
minimize the total number of nodes that are shared by multi-
ple subdomains, and hence the total communication volume.
The geometric partitioning algorithm has provable asymp-
totic upper bounds on the number of shared nodes, and in
practice generates partitions that are competitive with those
produced by other modern partitioning algorithms [7, 3, 8].

2.3 The Parallel SMVP

The running time of the Quake applications is dominated
by the execution of SMVP operations, which consume over
80% of the total running time in the sequential case. Fur-
thermore, the SMVP operations are the only operations (be-
sides I/O) that require interprocessor communication. So
even though the Quake applications are complicated, we
can abstract away most of the complexity and focus on the
performance of a simple well-defined parallel SMVP kernel.

To compute the global SMVP operation on a
set of PEs, we must consider the data distribution by which
vectors and matrices are stored. The vectors and are
stored in a distributed fashion according to the mapping of
nodes to PEs induced by the partition of elements among
PEs. If a node resides in several PEs (because is a vertex

of several elements mapped to different PEs), the values
and are replicated on those PEs. The matrix is

distributed so that resides on any PE on which nodes
and both reside. Figure 3 demonstrates this method of

distributing data.
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Figure 3. A finite element mesh and corre-
sponding stiffness matrix , distributed be-
tween two PEs. Each X represents a 3 3
submatrix.

With this method of distributing data, the global SMVP
is performed in two steps. First, each PE computes

a local SMVP over the subdomain that resides on that PE.
Second, PEs that share nodes communicate and sum their
nodal values into correct global values for each node. In
Figure 3, PEs 1 and 2 must communicate with each other to
resolve the values of the shared nodes 4, 5, and 6.

3 An SMVP performance model

Each global SMVP consists of a simple sequence, exe-
cuted simultaneously on each PE: a local SMVP (the com-
putation phase) followed by an operation in which each PE
exchanges and sums data with each PE it shares nodes with
(the communication phase). The computation and com-
munication phases are synchronous, i.e., each phase begins
with a global barrier synchronization.1 Further, we assume
(1) that during the communication phase, the summing op-
erations are overlapped with the exchanges, and (2) that the

1It is in principle possible, with difficult modifications to the applica-
tions, to improve performance by overlapping the computation and com-
munication phases, but the implementations of the Quake application do
not do this, so the models in this section follow suit. (This paper under-
takes to discuss how architects can accommodate scientific users, and not
vice versa.) By not modeling any overlap, we obtain conservative band-
width and latency estimates, and avoid possibly slowing the program by
complicating the runtime system.



time to perform the exchanges determines the running time
of the communication phase. These assumptions are rea-
sonable, as the summing operations can be handled by the
PE and the exchanges by a network interface.

Given these assumptions, the running time for each global
SMVP is

where is the time required for all PEs to finish their
computation phases, and is the time required for all
PEs to finish their communication phases. (For reference,
Figure 4 summarizes all symbols introduced in this section.)

Parameters for Equation (1)
flops per PE per SMVP
maximum communication words per PE per SMVP
target efficiency
amortized time per flop (inverse of sustained flops)

Parameters for Equation (2)
maximum communication blocks per PE per SMVP
maximum communication words per PE per SMVP
time per communication block (block latency)
time per additional block word (inverse of burst bandwidth)

Computed quantities
running time for sparse matrix-vector product (SMVP)
running time for computation phase of SMVP
running time for communication phase of SMVP
amortized time per comm word (inverse of sustained bwidth)
upper bound on relative overestimate of communication time
average message size (words)

Figure 4. Summary of symbols.

3.1 Model of the computation phase

The unit of work for the computation phase is a floating-
point operation (flop), which is either a scalar add or mul-
tiply. Although the flop is not an ideal way to measure
work in every application, it is reasonable for the SMVP
operation because the (minimum) number of flops each PE
must perform can be counted exactly and is independent of
the compiler and its optimization level. If a PE’s local ma-
trix has nonzeros, then the local SMVP requires at least

2 flops; one add and one multiply for each nonzero.
If each flop requires an average time of , then the running
time for a local SMVP is . Modern graph partitioners do
an excellent job of distributing computation evenly across
PEs [15], so we will assume that each PE performs 2
flops and thus the running time for the computation phase is

Since includes all hardware and software overheads (e.g.,
loads, stores, various miss penalties, pipeline stalls, etc.) it is
difficult to predict. However, can be precisely measured
for a particular application running on a particular system.

For example, measurements of the local SMVPs from the
Quake applications show a steady 30 ns for the Cray
T3D (150 MHz Alpha 21064, cc -O3) and 14 ns for
the Cray T3E (300 MHz Alpha 21164, cc -O3).

3.2 High level model of the communication phase

The hardware part of the communication system of a PE
is modeled as a network interface (NI) with an input link
and output link, as shown in Figure 5.

P MNI

PE

network

input linkoutput link

memory bus

Figure 5. Processing element (PE) model (P:
processor, M: memory system, NI: network
interface).

The running time of the communication phase is given
by

where is the maximum number of words communi-
cated by any PE during the communication phase and is
the average time per communication word. The rate 1

is the sustained bandwidth across the links of the network
interface during the communication phase. includes the
time to transfer data in and out of a PE, as well as all software
and hardware overheads.

We define the efficiency to be the proportion of SMVP
time devoted to computation; that is, .
Given this definition, 1 . We have
seen that , and hence

1
(1)

Equation (1) describes at a high level the relation between
sustained computation bandwidth ( 1) and sustained com-
munication bandwidth ( 1). The model is interesting be-
cause it cleanly separates the various factors that relate com-
putation performance to communication performance: The
computation/communication ratio is a property of
the application and the partitioner; is a property of the
processor architecture and compiler; is a target efficiency
imposed by the user. This separation of factors is similar



in spirit to the familiar CPI model for uniprocessor perfor-
mance [9].

In Section 4 we use Equation (1) to investigate the fol-
lowing question: given a target efficiency for an SMVP
running on PEs with local computational rates of 1, what
is the required communication performance of the system?
The answers to this question provide insight, for this class of
applications, into the sustained performance we need from
our communication systems as processor speeds continue to
increase.

3.3 Low level model of the communication phase

Equation (1) provides a high level model of sustained
performance in terms of streams of words being transferred
between memory and the network interface. However, in a
lower level and more realistic view of communication, the
unit of work during the communication phase is the transfer
of a block between the network and the local memory system
of the PE. The time for this transfer is called the block
transfer time. A block is a transfer unit, a group of words
that move together from one PE to another. Blocks may be
fixed-sized or variable-sized. For example, a block might
be a cache line in a CC-NUMA system [11], a message in
a message passing system [13], a bulk asynchronous data
transfer between two PEs’ memories [17], or a page in a
software distributed shared memory system [1].

The transfer time for a block of words is ,
where is the constant block latency, is the constant
marginal cost of transferring each additional word, and 1

is the burst bandwidth. Notice that the block latency does
not include any delay through an interconnection network.
We only model the overhead of transferring data between
the network interface and local memory, in view of previous
findings that most of the cost of communication on modern
systems is incurred at the individual PEs [19]. In essence,
we assume that the interconnection network has infinite ca-
pacity and constant latency. In an expanded version of this
paper [16], we argue empirically that this is a reasonable as-
sumption for the SMVP running on tightly coupled systems.

Modern graph partitioners do an excellent job of bal-
ancing computation ( ) and a good job of minimizing the
global volume of communication. Unfortunately they do
less well in balancing the total number of blocks and
the total volume in words sent and received by each PE

[15]. As a simplifying assumption, we pessimistically
assume that the PE that transfers the maximum number of
words ( ) is the same PE that transfers the maximum
number of blocks ( ). In this case, the same PE has the
longest communication phase, and thus

Finally, since , we have

(2)

and are properties of the communication system,
including the architecture, hardware implementation, and
software libraries. Elsewhere [16], we describe a simple
methodology for estimating these parameters on real sys-
tems. For example, for the Cray T3E, we have 22 s
and 55 ns. For message-passing systems,
(the maximum number of blocks transferred by one PE)
is purely a property of the application and the partitioner,
but on shared-memory systems it is also a property of the
architecture, as the data sent from one PE to another may
have to be broken up into multiple blocks (i.e., cache lines).
Thus, Equation (2) characterizes sustained communication
bandwidth during the communication phase of the SMVP in
terms of basic properties of the communication system and
the application. In Section 4, we use this model to explore
bandwidth and latency tradeoffs in communication systems
as the base microprocessors continue to improve.

The models in Equations (1) and (2) are similar in some
ways and different in others to the LogP model [4]. LogP is
a general performance model for bulk-synchronous parallel
(BSP) computations [20], where a program is viewed as a
series of supersteps separated by barrier synchronizations.
During a superstep, each PE performs local computation
and transfers a limited number of messages. The models we
have developed are for a restricted class of BSP programs
where each superstep (SMVP) consists of a distinct compu-
tation phase followed by a distinct communication phase.
In general our models view performance at a lower level of
abstraction than LogP. The parameters , , , ,
and have no counterparts in LogP. On the other hand,
our parameter is similar to the overhead parameter in
LogP.

3.4 An error bound

In (2) we assume that the PE with the most words to
communicate also has the most blocks to communicate. In
practice this assumption may not be true. The question is,
by how much do we overestimate (and thus ) as
a result? Elsewhere [16], we show that our model does not
overestimate by more than a factor of

1 min
is a PE

max

The bound is an application property, independent of any
target machine, that is equal to one when and
pertain to the same PE, and larger otherwise (but never larger



than two). Figure 6 shows the computed values of for the
Quake applications. Since is close to one for each of these
applications, (2) appears to be a reasonable model.

Subdomains sf10 sf5 sf2 sf1

4 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00
16 1.09 1.10 1.07 1.00
32 1.01 1.01 1.15 1.00
64 1.03 1.08 1.11 1.05

128 1.03 1.04 1.04 1.11

Figure 6. Computed relative error bounds
on for each Quake application.

4 Communication requirements

In this section, we use our performance models to ad-
dress the following question: As the base commodity mi-
croprocessors in parallel systems get faster, what kind of
performance will be needed from communication systems
in order to run the Quake SMVPs efficiently?

We will investigate this question for two hypothetical
machines: A “current” machine that runs the local SMVP
at a sustained rate of 100 MFLOPS ( 10 ns), and
a “future” machine that runs the local SMVP at a rate of
200 MFLOPS ( 5 ns). (Specifications are for 64-bit
floating-point values.) Computational rates of 100 to 200
MFLOPS may seem low, but they reflect the reality that
the actual performance of irregular applications is far less
than peak rated performance, largely because of irregular
memory reference patterns and because the data structures
are too large to fit in cache. For example, a single PE of a
Cray T3E (300 MHz Alpha 21164, cc -O3) runs the local
SMVP from the Quake applications at approximately 70
MFLOPS ( 14 ns), which is only 12% of the peak
rated performance of 600 MFLOPS.

The sf2 SMVP will serve as a running example. Sf2 is
a good example for a number of reasons. First, it is clearly
large enough to qualify as a real problem by any standard
(the sparse coefficient matrix is 1 14M 1 14M in size).
Second, even though it is quite large, it has a wide range of
computation/communication ratios ( ), from a high
of 450:1 when partitioned into four subdomains, down to
50:1 for 128 subdomains.

4.1 Properties of the Quake applications

Figure 7 summarizes the properties of the various Quake
SMVP instances. (See O’Hallaron and Shewchuk [15] for a
complete characterization of the applications.) The values of

and in this table are always even, because each

Subdomains sf10 sf5 sf2 sf1

453,924 1,899,396 24,640,110 162,372,024
4 2,352 7,746 55,338 186,162

6 6 6 6
369 1,290 8,682 27,540
193 245 445 872

235,566 970,740 12,414,006 81,602,442
8 2,550 7,080 35,148 151,764

12 12 10 14
237 699 4,152 13,761
92 137 353 538

122,742 496,872 6,278,076 41,116,374
16 2,208 5,292 28,482 119,280

18 20 16 18
159 342 1,920 7,434
56 94 220 345

64,980 257,004 3,191,436 20,740,734
32 2,172 4,476 24,018 87,228

30 30 26 26
87 213 1,239 4,044
30 57 133 238

34,956 134,424 1,632,708 10,511,586
64 1,764 4,296 20,520 73,062

38 40 36 38
57 135 765 2,712
20 31 80 144

18,954 70,956 838,224 5,332,806
128 1,740 3,360 16,260 51,048

62 52 50 46
36 135 459 1,515
11 21 52 104

Figure 7. Quake SMVP properties. : flops
per PE. : maximum communication
words on any one PE. : maximum com-
munication blocks on any one PE. : Av-
erage message size (words). : com-
putation/communication ratio.

message from PE to PE is matched by a message from
to of equal length. (The values of are also divisible
by three, because there are three degrees of freedom per
node.) The values of indicate the degree of subdomain
adjacency; for instance, if 46, then each subdomain
shares mesh nodes with at most 23 other subdomains, and
the corresponding PE must communicate with 23 other PEs.
These values assume that blocks may be arbitrarily large,
and hence each PE sends at most one block to each other
PE. On a fine-grained shared memory machine, where the
unit of interchange between PEs may be as small as a cache
line, may be much larger.

There are some interesting points to make about the
numbers in Figure 7. First, conventional wisdom holds
that sparse codes like the SMVP are communication inten-
sive. However, this is not always the case. As we see
for sf2, which is a reasonably large problem, the compu-
tation/communication ratios vary from large (450
for sf2/4) to moderate (50 for sf2/128). (We use the notation
sf / to denote an instance of application sf partitioned into

subdomains.) This common misconception about sparse
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(a) 10 ns (100 MFLOPS). (b) 5 ns (200 MFLOPS).

Figure 8. Sustained bisection bandwidths required for sf2.

codes is probably due to the fact that researchers have not
had the opportunity to run sufficiently large problems.

Second, while the computation/communication ratios
are reasonably high for large problems, as the problem
sizes grow by a factor of ten, we see that the computa-
tion/communication ratios grow only by a factor of two.
This is not surprising; consider that a good partition of an

-node 3D mesh will produce 2 3 shared nodes (for the
same reason that an -node cube has a surface area of

2 3 nodes). Hence, the computation/communication
ratio is 1 3 , and a factor-of-ten increase in yields
roughly a factor-of-two increase in that ratio. Our point
is that while large SMVPs indeed have reasonable com-
putation/communication ratios, these ratios do not increase
quickly with increasing problem size, as they do for cubic
problems like dense matrix multiply. Thus, we cannot rely
on simply increasing the problem size to guarantee good
efficiency.

Third, even when blocks are as large as possible (i.e., each
PE sends at most one block to any other PE), the mean block
size is surprisingly small. For example, the largest
mesh (sf1) running on 128 PEs has an average message size
of only about 1,500 words. Thus, we cannot rely on large
blocks to amortize high block latencies.

Finally, for sf1/128 each PE communicates with up to
20% of the other PEs. Thus, the Quake SMVP occupies
an interesting middle ground between difficult applications
like the 2D FFT that require an all-to-all communication,
and simple applications like regular grid problems wherein
PEs communicate with at most four neighbors.

4.2 Bisection bandwidth

Bisection bandwidth is a popular measure of communi-
cation system performance, but it proves to be unimportant

for Quake SMVPs. To compute the bisection bandwidth re-
quirements for a Quake SMVP running on PEs, we create
a symmetric matrix such that is the number of
64-bit words transferred from PE to PE . If we assume
that PEs 0 2 1 are on one side of the bisection and
PEs 2 1 are on the other side, then

2
2 1

0

1

2

words cross the bisection during the communication phase,
and the sustained bisection bandwidth is . Fig-
ure 8 shows the required bisection bandwidths given differ-
ent assumptions of PE performance and overall efficiency.
The worst case of 700 MBytes/sec ( 0 9 and 1 200
MFLOPS) is quite modest, on the order of the bandwidth of
a couple of links in a modern system. Bisection bandwidth is
unlikely to be an issue for SMVPs as local PE performance
increases.

4.3 Sustained PE bandwidth

Figure 9 plots the sustained bandwidth for each PE ( 1)
that is required for the sf2 SMVP under different assump-
tions of PE performance and overall efficiency. The re-
quired bandwidths are computed using Equation (1) and the
properties from Figure 7. On a system with 100-MFLOP
PEs, maintaining a sustained rate of 120 MBytes/sec per
PE during the communication phase is sufficient to run all
instances of the sf2 SMVP at 90% efficiency. On systems
with 200-MFLOP PEs, a sustained PE bandwidth of about
300 MBytes/sec will be required to run all of the sf2 SMVPs
at 90% efficiency.

A sustained PE bandwidth of 300 MBytes/sec seems like
an easy performance target until one remembers that it in-



sf2/4 sf2/8 sf2/16 sf2/32 sf2/64 sf2/128

1

10

100

1000

S
us

ta
in

ed
 p

er
-n

od
e 

ba
nd

w
id

th
 (

M
B

/s
)

Simulation

E=.9 E=.8 E=.5

sf2/4 sf2/8 sf2/16 sf2/32 sf2/64 sf2/128

1

10

100

1000

S
us

ta
in

ed
 p

er
-n

od
e 

ba
nd

w
id

th
 (

M
B

/s
)

Simulation

E=.9 E=.8 E=.5

(a) 10 ns (100 MFLOPS). (b) 5 ns (200 MFLOPS).

Figure 9. Sustained PE bandwidth ( 1) required for sf2.

cludes all overheads, including software overheads, local
strided read and write copies, and other latencies; we are not
concerned here with peak link bandwidth ratings. For ex-
ample, even though the optimal throughput of strided copies
on the Cray T3D is 30–40 MBytes/sec [19], current imple-
mentations of sf2 achieve at best a measured and sustained
bandwidth of 10 MBytes/sec using the C interface to the
vendor-supplied MPI library [2].

Even more daunting is the goal of running the Quake
applications at say 80% efficiency on high-speed networks
of workstations. This goal is attractive because it would
make it possible to obtain enough memory to run much larger
simulations, but demands sustained per-PE bandwidths of
about 100 MBytes/sec.

4.4 Bandwidth and latency tradeoffs

There is an interesting tradeoff between the burst band-
width and latency that are necessary to achieve some target
sustained bandwidth on each PE. If block latency is made
smaller, then burst bandwidth can be larger, and vice-versa.
Equation (2) quantifies this tradeoff, which is shown in Fig-
ure 10 for the sf2 SMVP running on 128 200-MFLOP PEs.
Any point along a diagonal line represents a combination of
burst bandwidth ( 1) and latency ( ) that meets the sus-
tained PE bandwidth requirement ( 1) for sf2/128 from
Figure 9(b). The curves are generated by first using Equa-
tion (1) to compute the required inverse sustained bandwidth

, and then using Equation (2) to determine the appropriate
combinations of and .

Figure 10(a) shows the burst bandwidth and latency trade-
offs under the assumption that blocks are as large as possible,
and thus each PE sends at most one block to any other PE.
This is the case in message passing systems or DSMs that
aggregate blocks [6]. The interesting point about this graph

is that latency matters for the SMVP. Even if burst band-
width is driven to infinity, observed block latency must not
exceed 3 s if the code is to run at 90% efficiency.

We can also use Equation (2) to get a sense of the la-
tency and bandwidth tradeoffs if blocks are small, fixed-
sized objects like cache lines. To model the tradeoff for
fixed-sized blocks consisting of four 64-bit words, we set

4 and then plot block latency as a function
of burst bandwidth as before, in Figure 10(b). Here, block
latency is even more crucial, as expected. For example, if
burst bandwidth is infinite, then observed block latency must
not exceed 100 ns if the SMVP is to run at 90% efficiency.

For a given application, a reasonable network design goal
is to achieve values for and 1 such that half of the time
for the communication phase is due to block latency and the
other half to burst bandwidth. We refer to a burst bandwidth
chosen thusly as the half-bandwidth, and its correspond-
ing latency as the half-bandwidth latency. These figures
are useful targets for architects of communication systems
because overengineering a network’s bandwidth cannot re-
lieve the latency constraint by more than a factor of two, and
vice-versa. Figure 11 plots the half-bandwidths and half-
bandwidth latencies for the entire space of sf2 SMVPs, for
both the maximal block size and the four-word block size.

The bottom portion of the graph shows the requirements
when blocks are fixed-sized four-word transfer units, as
might occur in a shared-memory architecture. For the easi-
est case, running at 50% efficiency on 100-MFLOP PEs, we
need a burst bandwidth of about 3 MBytes/sec with a block
latency of about 10 s. In the most difficult case, running
at 90% efficiency on 128 200-MFLOP PEs, we would need
a burst bandwidth of about 600 MBytes/sec and a block
latency of about 70 ns.

The upper portion of the graph shows the requirements
when blocks are made as large as possible (i.e., each PE
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Figure 10. burst bandwidth and latency tradeoffs for sf2/128 (200 MFLOP PE).
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sends at most one block to any other PE), as on a message-
passing multiprocessor or network. For the simplest case,
running at 50% efficiency on four 100-MFLOP PEs, we
would need a burst bandwidth of about 3 MBytes/sec and a
half-bandwidth latency of about 8 ms. However, the most
demanding case, where we are running at 90% efficiency
on 128 200-MFLOP PEs, requires a burst bandwidth of 600
MBytes/sec and a block latency of about 2 s.

5 Concluding remarks

Irregular applications have been poorly understood in the
past, in large part because researchers and system builders
have not had access to large realistic example applications.

This paper represents a step toward understanding the im-
plications of large-scale irregular codes on the architec-
ture of high-end systems. We have chosen to study un-
structured finite element simulations of strong earthquake-
induced ground motion because they constitute real and sig-
nificant engineering applications currently in daily use, and
because their performance is characterized by the perfor-
mance of a simple SMVP kernel. By examining the behavior
of the SMVP, we can diagnose the requirements placed on
communication systems in future high-end computers and
networks as the performance of commodity PEs continues
to increase.

Our main conclusions are: (1) Bisection bandwidth is
not an issue. (2) Block transfers tend to be small, even
for large applications. Thus we cannot expect to amortize
block latency costs with large messages; other latency hiding
techniques must be used, or latency must be reduced. (3)
Systems with sustained computational throughput of 200
MFLOPS and maximally aggregated blocks will need about
300 MBytes/sec of sustained bandwidth, 600 MBytes/sec
of burst bandwidth, and a block latency under 2 s to run
unstructured finite element applications with 90% efficiency.

The bandwidth requirements per PE for future systems
are aggressive, especially since they must include all hard-
ware and software overheads. Yet they seem achievable.
More worrisome are the block latency requirements (2 s
for large blocks, 7 ns for small blocks), which appear much
more difficult to achieve. The numbers in this paper provide
a strong quantitative argument for reducing latency in future
systems, either with more efficient interfaces, latency hiding
techniques, or both.



Postscript: Tools for further experimentation

The Spark98 suite [14], a collection of 10 portable se-
quential and parallel SMVP kernels written in C and based
on the sf10 and sf5 meshes described in this paper, is avail-
able at www.cs.cmu.edu/ quake/spark98.html. The com-
plete set of partitioned San Fernando meshes is available
from www.cs.cmu.edu/ quake/meshsuite.html.
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