A Separator-Based Framework for

Automated Partitioning and Mapping of
Parallel Algorithms for Numerical Solution of PDEs

Eric J. Schwabe!, Guy E. Blelloch!, Anja Feldmann®,
Omar Ghattas?, John R. Gilbert®, Gary L. Miller?,
David R. O’Hallaron®, Jonathan R. Shewchuk!, Shang-Hua Teng®

1School of Computer Science
2Department of Civil Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper is a report on ongoing work in develop-
ing automated systems for the partitioning, place-
ment, and routing of data that is necessary for the
efficient parallel solution of large problems in sci-
entific computing, specifically the numerical solu-
tion of partial differential equations. Many of these
problems have as an iterated inner loop the forma-
tion of the product of a large sparse matrix and a
vector of variables. This problem of sparse matrix-
vector multiplication has an underlying combina-
torial graph structure that can be exploited. Using
geometric information from the original problem,
we can partition this combinatorial graph using
provably good two- or three-dimensional graph sep-

This research was supported in part by the Defense
Advanced Research Projects Agency (DOD) monitored by
DARPA/CMO under Contract MDA972-90-C-0035, the
Air Force Office of Scientific Research under Contract
F49620-92-J-0131, the Natural Sciences and Engineering
Research Council of Canada under a 1967 Science and En-
gineering Scholarship, and the National Science Foundation
under Grants CCR-8713489, CCR-9016641, DDM-9009597,
and DDM-9114678.

3Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

arators (depending on the dimension of the prob-
lem). The resulting partitions into subproblems
have good load balancing properties and a rel-
atively small amount of communication between
subproblems. In order to develop effective heuris-
tics for the placement of these subproblems on the
available processors and the routing of messages
between them, we must also carefully consider the
characteristics of the target architectures. The first
parallel machine we are considering is the iWarp
system. The novel communication mechanism of
the iWarp system allows us to draw an analogy
between our placement and routing problem and
certain area minimization problems in the field of
VLSI circuit layout, giving us an additional collec-
tion of insights and heuristics which can be brought
to bear on our problem.

1 Introduction

There is widespread interest in the engineering and
scientific communities in using parallel computers
to solve larger problems than were previously fea-
sible. Many problems in computational science
and engineering can be modeled by partial dif-
ferential equations. Numerical approximation of
these equations over the spatial domain of inter-
est by finite difference, finite element, or finite vol-
ume methods gives rise to algebraic systems with



large, sparse coefficient matrices. Often, however,
the nonzero structure is irregular, as in problems
with geometric complexity or differing scales of res-
olution (typical of problems in solid and fluid me-
chanics). In these cases, achieving maximum per-
formance on distributed memory parallel comput-
ers (which generally are limited in both memory
and communication resources) requires careful par-
titioning of problems along with efficient placement
of and routing between the resulting subproblems.
Such domain-based problems have an underlying
combinatorial graph with useful properties derived
from its geometric structure, among them the ex-
istence of small separators which can be used to
partition the problem. However, both the place-
ment of subproblems on the processors of a paral-
lel computer and the routing between them require
detailed knowledge of the target machine if maxi-
mum performance is to be obtained.

Multiplying a sparse matrix by a vector is a
frequently-used inner loop in many linear solvers,
such as Krylov subspace methods (e.g., conjugate
gradients) and other iterative methods. There is a
natural combinatorial graph representation of this
problem which reduces the communication require-
ments of this multiplication to exchanging data
across all edges of the graph. The unstructured
meshes associated with finite element calculations
have underlying graphs with embeddings in two or
three dimensions already defined, which will in gen-
eral have small separators that may be used recur-
sively to partition these graphs into as many sub-
graphs as desired. The separator properties of the
underlying graph in two or three dimensions will
give bounds on the load balancing characteristics
and communication requirements of the resulting
partition.

As was stated earlier, effective performance in
placement and routing requires careful attention to
the properties of the target machines. Our first tar-
get is the iWarp system at Carnegie Mellon [3, 4],
whose novel communication mechanism adds some
interesting elements to the problem of placement
and routing. Its communication mechanism, which
uses circuit-switched logical pathways multiplexed
over each physical channel, changes the measures
we must consider when choosing a set of routing
paths. In particular, the maximum congestion of

a set of routing paths is of far greater importance
than its maximum dilation. This allows us to draw
a strong analogy between the problem of placement
and routing and established work in the area of
circuit layout [9, 12], and bring insights and tech-
niques from this area to bear on our problem. In
addition, geometric information from the original
problem is helpful in the placement of subprob-
lems. Preliminary experiments suggest that even
relatively simple heuristic approaches to placement
and routing for these graphs that take advantage
of their geometric structure perform nearly twice
as well as the current placement and routing pack-
ages on iWarp [15] in terms of the quantity of rout-
ing resources required to route a given underlying
graph. We are also planning an implementation on
the Connection Machine CM-5 [1, 11].

2 A Combinatorial Graph
Representation of Sparse
Matrix-Vector Multiplication

The problem of multiplying a large sparse matrix
by a vector is ubiquitous in scientific computa-
tion. Together with inner products and element-
wise vector operations (e.g., addition, multiplica-
tion by scalars), it is one of the basic primitives
used in iterative numerical methods, and is among
the most communication-intensive. For example,
the basic iterative step of the conjugate gradient
method for finite element calculations consists of
several inner-product calculations followed by one
multiplication of a sparse matrix by a vector (and
some simpler elementwise operations). It is impor-
tant to note at this point that although the nonzero
entries of the matrix may change over time for non-
linear problems, the nonzero structure of the ma-
trix is fixed.

We now consider the communication require-
ments for calculating the product y of a sparse nxn
matrix A and an n-element vector z. Assume that
there are n processors, and each processor ¢ stores a
single element z; of the vector. In order to calculate
Yy;, processor ¢ must receive the values z; from each
processor j such that A;; # 0. The value z; must
be multiplied by A;;, at either the source or the
destination. Thus the set of routing paths which



we must implement on the network of processors
includes an edge from processor j to processor ¢
whenever A;; # 0. Since in our application areas
the nonzero structure of A is typically symmetric
(even if A is asymmetric), this set of routing paths
is just the undirected graph on n vertices whose
adjacency matrix is A. We will refer to this graph
as (G. This reduces the problem of calculating the
product of a sparse matrix and a vector to that of
exchanging data across all edges of G.

Given G, the problem of performing an inner
product z -y is relatively simple, because each pro-
cessor ¢ holds the values of both z; and y;. All
that is required is for the ith processor to calcu-
late z;y;, and then for the resulting values to be
accumulated over the n processors using a span-
ning tree in (. Elementwise operations on the
vectors require no communication, but distribution
of scalars for scalar-vector multiplication will re-
quire a broadcast, which can use the same spanning
tree. These two primitives, data exchange and ac-
cumulation /broadcast, are sufficient to implement
most iterative methods. Since the data exchange
graph contains the spanning tree for the accumu-
lation /broadcast operation, we need only consider
the implementation of the communication needed
for the sparse matrix-vector multiplication.

3 Graph Partitioning Using
Separators

3.1 Partitioning of Sparse
Matrix-Vector Multiplication

In general, the sparse matrix-vector multiplications
used in scientific computing can have millions of
variables, which is far more than the number of pro-
cessors in current parallel machines. Therefore we
partition the problem into subproblems and map
the subproblems to the available processors, while
allowing for the necessary communication between
subproblems.

The most natural way to partition a graph G'is to
remove some subset of its edges, leaving some con-
nected components of vertices remaining. These
connected components are assigned to processors.

This is called vertez-partitioning, because each ver-
tex is assigned to a single processor.

Current finite element implementations suggest
a different partitioning approach. First, we must
define some terms. A cellis a closed polygon (usu-
ally a triangle or rectangle) in two dimensions, or
a polytope (usually a tetrahedron or rectangular
prism) in three dimensions. For our purposes, a
finite element consists of a cell and a set of physi-
cal quantities associated with each node of the cell
(such as the node’s position in space). For a for-
mal definition of finite elements see [8]. A finite
element mesh is a collection of finite elements that
fills some region of space. In Figure 2, we illustrate
the cell structure of a finite element mesh.

Vector z, whose length n is the number of
nodes in the mesh, specifies some physical attribute
(which may be multidimensional, such as displace-
ment) of each node. Because the nodes of an el-
ement have a direct physical effect on each other,
A;; is nonzero if and only if nodes 7 and j are in
some common element e.

Given a finite element mesh M, the correspond-
ing graph finile element graph G is generated by
creating one vertex in G for each node in M, and
adding an edge to G for each pair of nodes which
share a common element. Thus, if M is composed
of triangular elements, G will be the skeleton of M.
If M is composed of square elements, G' will con-
tain the skeleton of M, with the addition of edges
between opposite corners of squares.

It is possible to partition G by cutting between
mesh elements and storing a copy of each ver-
tex along the cut in each bordering block of the
partition. This is called element-partitioning, be-
cause each element is assigned to a single processor,
whereas some vertices are assigned to several pro-
Cessors.

In order to write an efficient implementation
there are two measures we must keep in mind.
First, we must keep the sizes of the partition blocks
relatively balanced — note that for this problem,
the amount of local work done on a processor is the
number of edges contained in its partition block,
not the number of vertices. Second, we wish to
keep the boundaries of the partition blocks as small
as possible, as this corresponds to the amount of



interprocessor communication we must perform. In
the next subsection we will discuss how graph sep-
arators allow us to address both of these concerns.

If we have partitioned G into p blocks, where
p is the number of available processors, then we
can define the p-vertex minor G’ derived from G
and the partition. G’ is a weighted graph with a
supervertex for each block of the partition, and an
edge between two supervertices if their correspond-
ing blocks need to communicate with each other
(i.e., they either have a cut edge between them or
contain copies of the same vertex, depending on the
partitioning approach). The weight on an edge of
G' is the number of values which must be commu-
nicated between those two supervertices in order
to perform a multiplication. The weighted minor
G' is what we must place and route on the target
machine.

3.2 Implementation of Separators in
Two and Three Dimensions

Miller, Teng, Thurston and Vavasis [13] give prov-
ably good separators in two or three dimensions for
the sort of combinatorial graphs generated by these
problems. These separators can be used recursively
to obtain a partition of the graph with both good
balance among block sizes (corresponding to pro-
cessor load) and a relatively small number of cut
edges or duplicated vertices (corresponding to data
which must be routed), depending on the method
of partitioning.

We have implemented the random linear time
separator algorithm of Miller et al. [13] in Mat-
lab. The input to the algorithm is a pair (G,zyz),
representing a graph embedded in two or three di-
mensions. G is the graph we derive from the finite
element mesh M, and zyz is the coordinates of the
vertices of G (taken from M).

A detailed description of the graph partitioning
algorithm can be found in [14]. The following is an
outline of the basic steps.

Algorithm (Vertex-Partition a Graph in
R)
Input: G, zyz in R?.

1. Choose a random sample S of con-
stant size® from zyz;

2. Map S conformally onto the unit
sphere in IR in such a way that
every hyperplane through the origin
partitions S approximately evenly.

3. Choose hyperplanes randomly until
a good split is found;

4. Map the great circle induced by the
hyperplane back to IR? to obtain a
sphere that partitions G (as well as
xyz) approximately evenly;

5. The edges that cut this sphere form
an edge separator. This set of edges
can be found using the structure of
G (If a vertex separator is desired,
it can be computed from the edge
separator above. The structure of G
can be used to optimize the separa-
tor size.)

6. Partition G into two subgraphs, G
and G3. Each vertex is placed into
G or G2, depending on whether it
is mapped to the interior of the ex-
terior of the sphere in IR%;

7. Recursively partition G; and G.

Element-partitioning can be done similarly.Each
element is placed into G or G5 depending on, for
instance, where the center of the element falls.

Two important aspects of the partitioning algo-
rithm make it suitable for efficient practical imple-
mentation:

o Geometric Sampling: Graphs derived from
large-scale computational problems may have
millions of vertices. Geometric sampling is a
technique that reduces the problem size and si-
multaneously guarantees a provably good ap-
proximation of the larger problem. The ba-
sic idea is to first choose a random sample of
the input, then solve the partitioning problem
over the sample. The underlying geometric

“See [14] for the theoretical justification. According to
our experiments, 400 to 800 points work well in two dimen-

sions, and 600 to 1100 points work well in three dimensions.



structure of the mesh ensures the quality of
the partition.

o Fxploiting both Geomelric and Combinatorial
Structures: The geometric structure of the
mesh not only ensures the quality of the ap-
proximation, but also enables efficient imple-
mentation of some key subroutines. One of
the goals of the algorithm is to find a balanced
partition while minimizing the cost of the cut.
The geometry of the mesh is used to map the
problem into a canonical form so that the ran-
domized selection can be performed efficiently.
Then the combinatorial structure of the graph
is used to derive and optimize the final solu-
tion.

We have experimented with various examples,
and the numerical results are encouraging. With
the help of some heuristics to speed up the geo-
metric transformation and the local optimization,
the program is fast (even in the Matlab environ-
ment, which is interpretive and lacks code opti-
mization). In practice, our program generates par-
titions much better than the theoretical results pre-
dict. The partitions are competitive with such
previous methods as those based on an expensive
eigenvector computation [16].

4 Parallel Implementation of
Matrix-Vector Product

Here, we consider how a matrix-vector product y =
Az might be implemented for a vertex-partitioned
graph and an element-partitioned graph. Recall
that G represents the sparsity structure of A. We
assume that A, z, and y are distributed over the
processors according to the partition of G. We will
show that element-partitioning has distinct advan-
tages.

After we have partitioned G into p blocks, let G,
be the subgraph of G corresponding to the block
that is mapped to processor ¢ by the placement
algorithm (see Section 5). Let G, and Gy be two
such graphs, whose corresponding supervertices in
G' are adjacent.

4.1 Vertex-Partitioned Problems

Suppose G has been vertex-partitioned. Then, for
each vertex u in G4, processor a stores the value z,
and the nonzero entries of row u of A. In order to
calculate y,, processor ¢ must have the entry of z
for each vertex adjacent to w in GG. In other words,
processor ¢ must allocate storage for every vertex
adjacent to G, in G, as well as for every vertex in
Gy. Thus, processors a and b share two “layers” of
vertices at the border between G, and Gy.

The multiplication is performed in two phases.
The first phase is a communication phase in which
every processor receives needed entries of z from
its neighbors in G, so that each processor has up-
to-date entries for every vertex it uses. The second
phase is a computation phase in which each pro-
cessor p calculates y, for each vertex w in G.

4.2 FElement-Partitioned Problems

Now, suppose instead that G' has been element-
partitioned. Then, for each vertex u in G, pro-
cessor a stores the entry z,. For each edge (u,v)
in (G, processor a stores the value A,, if a is the
only processor storing both w and v. Otherwise,
the value A,, is split between several processors.

To understand how the matrix A is stored, it
is necessary to have some understanding of how
the sparse matrices used in finite element methods
are generated. Typically, a separate calculation is
made for each element. Any element whose ver-
tices include both u and v will make an additive
contribution to A,,. The process of summing the
contributions of individual elements to determine
the value of A is called assembly.

Figure 1 is an example of element-partitioning.
Suppose that the vertices s and ¢ are each in both
(G, and Gy (recall that in an element partition, ver-
tices on the boundary are contained in both sub-
graphs). Suppose that edge (s,t) is part of two
elements: e in (G, and €' in G. Then, the con-
tribution of e to Ay is stored on processor @, and
the contribution of €’ to A, is stored on processor
b. Let PA,; denote the contribution to Ay stored
on processor p. Then, Ay = 37 PAy. We say
that PA is partially assembled, because it has been



assembled everywhere except at processor bound-
aries. Clearly, we could fully assemble A by com-
municating the shared values between processors
and summing; but as we shall see, a fully assem-

bled A would be less useful.

Processor a Processor b

S

Figure 1: An element-partitioned mesh.

Again, the multiplication is performed in two
phases; however, the computation phase is first.
Each processor p calculates a local matrix-vector
product of the form Py = PAzx.

The communication phase follows. For each ver-
tex u shared by two or more processors, these pro-
cessors exchange their respective entries for Py,,
and take the sum. This gives us correct values be-
cause y = Az = (3, PA)z = )}, PAz = 3, Py.
We see that vectors, like matrices, have both par-
tially assembled and fully assembled forms; and the
product of a partially assembled matrix and a fully
assembled vector is a partially assembled vector.
(There is no similar property for fully assembled
matrices.)

4.3 Comparison of Partitioning
Approaches

When using the element-partitioning approach,
processors a and b share only one “layer” of vertices
at the border between G, and Gy, so less storage
space is required for a vector than when using the
vertex-partitioning approach. The sparse matrix
A, which dominates memory usage, requires less
storage in the element-partitioning approach if A is

symmetric, and requires less storage in the vertex-
partitioning approach if A is asymmetric (for rea-
sons we omit here). The element-partitioning ap-
proach makes initial matrix generation much eas-
ier, because A is built element-by-element, so no
communication is required.

So far, these are small differences. There are two
far greater advantages to the element-partitioning
approach. First, in nonlinear problems where the
matrix A changes over time, A can be recomputed
without communication.

Second, the element-partitioning approach al-
lows assembly of a vector to be delayed, and thus
may reduce the amount of communication which
must be done. For instance, suppose one wishes
to calculate z = Az + By, where A and B are
sparse matrices with the same sparsity structure.
(This arises in the solution of second-order differ-
ential equations.) The products Az and By each
produce a partially assembled vector. These two
partially assembled vectors can be summed locally
to form a third partially assembled vector; this vec-
tor, if necessary, can be assembled to form the re-
sult z. Note that only one assembly, and thus only
one communication step, is needed for two matrix-
vector products. This is called the delayed assembly
optimization.

Because of the communication reduction and
speed advantages of matrix generation and the de-
layed assembly optimization, we strongly prefer the
element-partitioning approach.

4.4 Code Generation Issues

Our goal is a code generator for finite element
methods, that takes as its input the mesh M and
a machine-independent description of a finite ele-
ment algorithm, and automatically partitions the
problem and generates multiprocessor code to exe-
cute the algorithm.

A code generator can handle the delayed assem-
bly optimization in two ways. Omne is to deter-
mine at compile time when vector assembly should
take place. This requires data dependence analy-
sis, and cases will arise where it is not applicable
because the behavior of an algorithm is not always



predictable. The other solution is to defer all as-
sembly decisions until runtime. When an operation
requires a fully assembled vector as input, it checks
the vector provided and calls an assembly subrou-
tine if necessary. However, this creates another
problem: inner products and elementwise multipli-
cation require that at least one of their operands
is fully assembled. If two partially assembled vec-
tors are provided, one must be chosen arbitrarily
for assembly, with no knowledge of which would
be the better choice. We have not yet surveyed
enough different finite element problems to resolve
this issue.

5 Placement and Routing

5.1 Background

Let H be a graph which represents the intercon-
nection network of the target machine. Once we
have partitioned G into subgraphs that correspond
to subproblems to be solved locally, and identified
which subproblems will have to communicate and
how much information they will have to send to
each other, we must embed the resulting p-vertex
weighted graph G’ into H. To implement the ex-
change of data across each edge of G, we must com-
municate between each pair of adjacent vertices in
G’ an amount of data proportional to the weight of
the edge between them.

For our purposes, an embedding of a weighted
graph G into a graph H (as distinguished from an
embedding of a graph in two- or three-dimensional
space) is a mapping of the vertices of G to the
vertices of ‘H, corresponding to an assignment of
subproblems to processors, together with a map-
ping of the edges of G to paths in ‘H, corresponding
to routing paths between processors which need to
communicate. We are only considering one-to-one
vertex mappings because our first target machine
does not support multi-tasking and our partition-
ing approach already guarantees us load balanc-
ing. In general, the two most important measures
of the efficiency of such an embedding are its dila-
tion, which is the maximum length of the paths in
‘H corresponding to edges in G, and its congestion,
which is the maximum over all edges e in ‘H of the

total weight of the edges in G whose correspond-
ing paths contain e. (Since we are only considering
one-to-one mappings, the load of our embeddings
will always be one.)

The goal of keeping dilation and congestion low
is to minimize the total time required for communi-
cation, so the relative importance of these measures
for a particular machine is dependent on its com-
munication mechanism and routing method (e.g.,
store-and-forward versus circuit-switched routing).
When we consider different machines, we also ex-
pect to discover additional measures of the effi-
ciency (or even feasibility) of embeddings that de-
pend on specific features of their architectures.

5.2 The iWarp System

Our first target machine is the iWarp system. The
iWarp system is based on a single chip VLSI pro-
cessor [3, 4] developed jointly by Carnegie Mellon
and Intel Corporation. The iWarp component con-
tains a computation agent, and a communication
agent for transferring data to and from other iWarp
processors. Computing rates up to 20 Megaflops
and 20 MIPS per cell are possible in the computa-
tion agent. The communication agent can sustain
a bandwidth of 320 Megabytes/second per cell with
a latency of 0.2 microseconds per hop. iWarp sys-
tems are 2-dimensional tori of iWarp processors,
ranging in size from 4 to 1024 processors. All im-
plementations are done on a 64-processor system
at Carnegie Mellon.

iWarp processors communicate with neighboring
processors over structures called logical channels,
which can be chained together to form pathways
[4]. Although the physical connection pattern of
the iWarp is a 2-dimensional torus, logical channels
and pathways allow for logical connection patterns
such as rings, trees, or even hypercubes [17]. A net-
work of logical channels can be created statically at
compile time or created and destroyed dynamically
at runtime. Each iWarp processor can support at
most 20 logical channels incident to it at any point
in time. (Note that a logical channel is a unidi-
rectional communication medium, so two pathways
are required to implement each edge of G'.) Since
pathways are handled completely by the communi-
cation agent the delay at each processor along such



a pathway is very small, and data communicated
thus does not interrupt the computation agent.

From these characteristics of iWarp systems we
can now discuss some measurements of the effi-
ciency of embeddings.
portance because of the low latency of the path-
ways. Congestion is a very important measure-
ment because all pathways sharing a certain phys-
ical connection are multiplexed over that link,
and the total available bandwidth is limited to 40
Megabytes/second per physical channel. In addi-
tion to these traditional measurements we have to

Dilation is of minor im-

face the fact that each iWarp processor can only
support up to 20 logical channels at any point in
time. Therefore if we cannot limit the number of
logical channels needed to be at most 20, then we
have to use dynamic setup of pathways, which is
slower than the static setup of pathways. This
makes the vertex congestion of our embeddings, de-
fined for each vertex in the target graph H as the
total number of paths in H (that correspond to
edges in G') that are incident to that vertex, of
paramount importance since it determines which
style of pathway setup to use. (We are currently
investigating whether there are more efficient ways
to implement precomputed routing patterns which
require more than 20 logical channels per proces-
sor.)

We have implemented code for the iWarp sys-
tem to solve a second-order time-varying equation
used for earthquake simulation, with encouraging
results. This code uses a mesh which has been man-
ually element-partitioned to allow the use of static
pathways.

5.3 Approaches to Placement and
Routing

Because of the communication mechanism of the
iWarp system, the congestion of our embeddings is
more important than their dilation to the amount
of time it will take to communicate the needed mes-
sages. This is analogous to some of the issues con-
sidered in Gate Array layout (see [12]), where the
placement problem reduces to an assignment prob-
lem. In the Gate Array layout problem, each gate
in the netlist of the circuit has to be assigned to a
set of cells on the master that will implement the

gate. In our placement problem, each subproblem
needs to be assigned to a processor. The routing
problem between gates in the Gate Array layout
problem is characterized by the fact that the rout-
ing channels on the master have a fixed width (of-
ten the same over the whole chip). This is in con-
trast to standard-cell and full-custom layout, where
the channel widths can be chosen by the layout al-
gorithm. Routing a connection in the layout prob-
lem is analogous to embedding a graph edge in the
processor network. The limited number of logical
channels is analogous to the fixed uniform chan-
nel width in the Gate Array layout problem. We
use the analogy between these problems to bring
some ideas from layout algorithms to our heuris-
tics for embedding G’ into the graph representing
the interconnection network of the target machine.
Placement corresponds to the mapping of vertices
to vertices, and routing to the mapping of edges to
paths.

For placement, it is clearly to our advantage to
take into account as much of the geometric infor-
mation given in the original problem as possible.
After all, the first step in layout is often to come
up with an embedding of the graph in the plane,
and G is given to us already embedded in two- or
three-dimensional space. One simple approach to
placing two-dimensional graphs in the grid is to
simply halve the set of vertices repeatedly with al-
ternating vertical and horizontal cuts, and map the
64 vertices to the torus in the natural way. On the
other hand, we can take advantage of the structure
of the graph in a deeper way by using the recursion
tree from the partitioning algorithm to map the p
vertices of the graph of partition blocks to the ver-
tices of the torus. There are many other heuris-
tics for this placement problem, including simu-
lated annealing and distance minimization, which
we continue to investigate.

There are also a variety of approaches which can
be taken for routing the needed connections. The
simplest are one- and two-bend routing schemes
with or without randomization, but algorithms us-
ing weighted shortest paths to minimize congestion
seem to work considerably better. By rerouting
paths which pass through areas of high congestion
and varying the vertex weights and cost functions
in appropriate ways, routings with very good bal-



ance of congestion across the network can be ob-
tained. Local optimization heuristics yield further
improvements. We are currently experimenting ex-
tensively with these methods.

Preliminary experiments have shown that it is
not likely that we will be able to embed even the
weighted graphs which are derived from partitions
of two-dimensional problems within the current nu-
merical limits that would allow us to implement
our communication as a single set of static paths.
This does not bode well at all for three-dimensional
problems, where the average degree of the weighted
graphs is nearly double. However, in two dimen-
sions it seems that in general we can divide up the
communication into two sets of statically routable
paths (as it turns out, simply putting one orien-
tation of each bidirectional edge into each set will
work). Two sets may suffice for three dimensions
as well, but this requires more study. iWarp re-
searchers are currently studying the question of
how efficiently one can switch between precom-
puted sets of routes such as these when the com-
munication phases are tightly synchronized.

5.4 The Connection Machine CM-5

Our next target machine is the Connection Ma-
chine CM-5 [1, 11]. The CM-5 is made up of
SPARC microprocessors with optional vector units
which are connected by three different intercon-
nection networks: the data network (organized as
a fat-tree [10] with processors at the leaves), the
control network, and the diagnostic network. The
data network provides a high-bandwidth network
(up to 20 Megabytes/sec at each processor) that
supports message-based, point-to-point communi-
cation. Sending a message over the network re-
quires no special routing decisions by the user. The
fat-tree network is best suited for communication
patterns with hierarchical locality. Communication
patterns that take advantage of locality run up to
four times faster than random patterns with the
same total throughput. The control network sup-
ports the data-parallel programming model as well
as efficient primitives for synchronization, broad-
cast and scan.

To solve PDEs, we need to embed the p-node
quotient graph G’ into the data network. Because

the network hardware takes care of the routing via
a randomized algorithm [6], we do not need to spec-
ify the embedding of the edges, but only need to
map the vertices of G’ to the target fat-tree in a
way that will enable the hardware to find efficient
routings.

Because fat-tree topologies do not have the same
bandwidth on all their communication links, a gen-
eral guideline to optimize the efliciency of the rout-
ing of a certain communication pattern is to keep
all point to point communication as local as pos-
sible. This means that it is important to keep the
number of messages passing through any switch
proportional to the available capacity. The quality
of a placement of G’ on a fat-tree F is measured
by how well its communication requirements match
the actual capacity limitations of the fat-tree.

It is clear how to use the separator results to ob-
tain a natural and fairly efficient placement. Dur-
ing partitioning of G, we derive a binary cutl tlree
T, which is the recursion tree of the partitioning
algorithm. The leaves of T represent the vertices
of G'. We can collapse alternate levels of T' to ob-
tain a 4-ary tree whose structure matches that of
the fat-tree of the data network, and embed this
tree into the fat-tree in the natural way. Due to
the properties of the geometric separators and the
fat-tree network, this mapping should yield reason-
ably good results. We are interested in seeing how
locality concerns affect the performance of our im-
plementation.

We intend to analyze the time spent on computa-
tion and communication (once the optional vector
units are available to us), and compare the effi-
clency and simplicity of the CM-5’s data-parallel
model, its MIMD model, and the iWarp MIMD
implementation.

6 A Step-by-Step Example

On the following pages we illustrate the partition-
ing, placement, and routing of an unstructured fi-
nite element mesh with roughly 5000 nodes on an
8 X 8 torus (the network topology of our current
iWarp system). The mesh was designed to pre-
dict stresses in a cracked plate, and because of the
singularity in stress at the crack tip, is hundreds of



times more dense at the center than near the edges.
The purpose of this small example is to show the
behavior of our partitioning method on an unstruc-
tured mesh with a large variation in resolution.

Figure 2 illustrates the original finite element
mesh M for the problem. Note that the mesh is
so refined near the center that the figure is com-
pletely black. Figure 3 is the underlying graph G
of M, after having been vertex-partitioned into 64
blocks. Due to the fineness of the original mesh,
many of the partition blocks are indistinguishable.
Figure 4 illustrates the 64-vertex quotient graph G’
derived by collapsing all the vertices in each block
of the partition to a single supervertex. Finally,
Figure 5 shows a placement and routing of G’ on
an 8 X 8 torus. Edges extending past the boundary
of the grid wrap around to the other side.

7 Future Directions

The ultimate goal for this project is a fully au-
tomatic code generator for finite element prob-
lems, which as discussed earlier, will take as in-
put a finite element mesh and a high-level machine-
independent description of the algorithm, and will
automatically partition the problem and generate
code which it will place and route on the target
machine. (The problem of generating finite ele-
ment meshes is an interesting problem as well, but
we do not address it here.)

Many of the tools needed for such a code gener-
ator currently exist, at least in preliminary form:
Programs for graph partitioning, automated place-
ment and routing, and parallel computation of
sparse matrix-vector products on iWarp systems.
The next step is to continue to integrate and im-
prove these tools.

We are reimplementing the graph partitioning al-
gorithm in C, to improve its portability and to al-
low better integration with our other modules. We
are also considering a data-parallel implementation
in NESL [2], for possible use with exceedingly large
meshes.

Regarding placement and routing on iWarp sys-
tems, we must either develop methods for code
generation which can orchestrate communication in

graphs which are not statically routable, or modify
our partitioning code to guarantee that the result-
ing quotient graphs will be statically routable. An-
other possibility is to implement statically routable
subgraphs of the needed communication graphs.
Then some messages will need to be routed over a
series of pathways in order to reach their destina-
tions. This approach seems particularly promising.

References

[1] “The Connection Machine CM-5 Technical
Summary.” Thinking Machines Corporation,
1991.

[2] G.E.Blelloch. “NESL: A Nested Data-Parallel
Language.” Technical Report CMU-CS-92-
103, Carnegie Mellon University, 1992.

[3] S. Borkar, R. Cohn, G. Cox, S. Gleason, T.
Gross, HT Kung, M. Lam, B. Moore, C. Pe-
terson, J. Pieper, L. Rankin, P. Tseng, J.
Sutton, J. Urbanski, and J. Webb. “iWarp:
an Integrated Solution to High-Speed Parallel
Computing.” In Proceedings of Supercomput-
ing 88, 1988.

[4] S. Borkar, G. Cox, HT Kung, M. Levine, W.
Moore, J. Susman, J. Urbanski, R. Cohn, T.
Gross, B. Moore, C. Peterson, J. Sutton, and
J. Webb. “Supporting Systolic and Memory
Communication in iWarp.” In Proceedings of
the 17th Annual International Symposium on
Computer Architecture, 1990.

[5] J.R. Gilbert, G.L. Miller, and S.-H. Teng.
“A Geometric Approach to Mesh Partitioning:
Implementation and Experiments.” Technical
Report, Xerox Palo Alto Research Center, to
appear.

[6] R.I. Greenberg and C.E. Leiserson. “Random-
ized Routing on Fat-Trees.” In Randomness
and Computation, Vol. 5 of Advances in Com-
puting Research, JAI Press, 1989.

[7] S. Hammond and R. Schreiber. “Solving Un-
structured Grid Problems on Massively Paral-
lel Computers.” Technical Report TR 90.22,
Research Institute for Advanced Computer
Science, 1990.



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[17]

C. Johnson. Numerical Solutions of Partial
Differential Equations by the Finite Flement
Method. Cambridge University Press, 1987.

F.T. Leighton. Complezity Issues in VLSI
MIT Press, 1983.

C.E. Leiserson. “Fat-Trees: Universal Net-
works for Hardware-Efficient Supercomput-
ing.” IEEE Trans. Computers, C-34(10):892—
901, 1985.

C.E. Leiserson, Z. Abuhamdeh, D. Douglas, C.
Feynmann, M. Ganmukhi, J. Hill, W. Hillis,
B. Kuszmaul, M. St.Pierre, D. Wells, M.
Wong, S. Yang, and R. Zak. “The Network
Architecture of the Connection Machine CM-
5.7 To appear in Proceedings of the 4th Annual
ACM Symposium on Parallel Algorithms and
Architectures, 1992.

T. Lengauer. Combinatorial Algorithms for
Circuit Layout. John Wiley & Sons, 1990.

G.L. Miller, S.-H. Teng, and S.A. Vavasis. “A
Unified Geometric Approach to Graph Separa-
tors.” In Proceedings of the 32nd Annual IEFE
Symposium on Foundations of Computer Sci-
ence, 1991.

G.L. Miller, S.-H. Teng, W. Thurston, and
S.A. Vavasis. “Automatic Mesh Partitioning.”
To appear in Proceedings of the 1992 Work-
shop on Sparse Matriz Computations: Graph
Theory Issues and Algorithms, Institute for
Mathematics and its Applications.

D.R. O’Hallaron. “The ASSIGN Parallel Pro-
gram Generator.” Technical Report CMU-CS-
91-141, Carnegie Mellon University, 1991.

A. Pothen, H.D. Simon, and K.-P. Liu. “Par-
titioning Sparse Matrices with Eigenvectors
of Graphs.” Technical Report RNR-89-009,
NASA Ames Research Center, 1989.

T.M. Stricker. “Supporting the Hypercube
Programming Model on Mesh Architectures
(A Fast Sorter for iWarp Tori).” To appear
in Proceedings of the 4th Annual ACM Sym-
posium on Parallel Algorithms and Architec-
tures, 1992.



0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

Figure 2: A finite element mesh M for predicting stresses in a cracked plate.




0.8

0.6

0.4

0.2

4WN{

PP

P
XXX D
N

P

XPIXIXDAIXD

XIXXIN/IN
NXNY

NZAVZAN

B

S

*‘EF@&A

SEREHRKS
000N

A‘ﬂﬂ N

0.2

0.4 0.6

0.8

Figure 3: The finite element graph G vertex-partitioned into 64 blocks.



0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

Figure 4: The corresponding 64-vertex quotient graph G'.




Figure 5: A placement and routing of G’ on an 8 x 8 torus.




