Functional Set Operations with Treaps

Dan Blandford and Guy Blelloch
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

{blandford,blelloch}@cs.cmu.edu

August 8, 2001

Abstract

Purely functional algorithms have the advantages of leading to full persistence of all partial
results, being easier to parallelize, and being easier to formally analyze. We present sequential
and parallel functional algorithms for computing the union, intersection and difference of ordered
sets using a variant of random balanced binary search trees (treaps). The algorithms are optimal
with respect to the Block Metric bound of Carlsson et al.. In particular for two sets of length
n and m, with m < n, the algorithms run in O(klg(% + 1)) expected work, where k is the
least possible number of blocks that we can break the two lists into before reforming them into
one list. The expected parallel depth of the parallel algorithms is O(logz(n)). The sequential
bounds can also be achieved using the purely functional catenable list data structures suggested
by Kaplan and Tarjan. However, we believe our are structure is significantly simpler—it only
involves reversing the spines of a standard treap. We also present experimental results that
analyze the constant factors involved in the algorithm.

A full implementation of our algorithms is available on the web at
http://www.cs.cmu.edu/ pscico/fingertrees.html in both JAVA and SML.

1 Introduction

A purely functional algorithm is one that involves no side effects, i.e. no overwriting of existing
data. Such algorithms have several advantages over imperative (side-effecting) algorithms, including
the strongest form of persistence (data can never be overwritten), a more direct path to parallelism
(independent threads cannot interact through memory writes), and a much better chance of formally
or automatically reasoning about them. The purely functional model, however, is provably less
powerful than imperative model [24], and it is not well understood what problems can be solved
in the functional model with the same bounds as in the imperative model. To better understand
the power of functional programs, there has been significant recent interest in developing eflicient
purely functional algorithms, both in the sequential [21, 18, 17, 22, 4] and in the parallel [6, 5]
context. We note that although purely functional algorithms are typically discussed in the context
of languages that are considered functional, such as ML or Haskell, these algorithms can also be
programmed in languages that are considered imperative, such as JAVA.

In this paper we are interested in implementing set operations (union, intersection and differ-
ence) using purely functional algorithms. As motivation for this interest, consider the following
application to search engines. Almost all search engines use an “inverted-lists” structure for storing
the mapping of terms to documents [28]. This structure is simply a collection of “lists”, one for
each term in the database, and each list contains all the documents in which that term appears.
Abstractly each list is better thought of as a set since the order has no importance. When a query
is made involving and expression of AND and ORs on terms, this can be translated to intersections
and unions on the corresponding sets (set difference can be used for ANDNOT queries). It is well
known that these set operations can be implemented in time that is sublinear in the sum of the
input sizes. Brown and Tarjan showed that merging two lists X and Y of size n and m (with
n > m) takes O(mlg(Z + 1)) comparisons using AVL trees to represent the lists [7]. Assuming
a total order on the set elements, it is not hard to extend the results to implement set union,
intersection and difference in the same bounds. This sublinear time is particularly important when
one list is much longer than the other, which happens frequently in practice (consider the query
“red AND coeloglossum”).

The imperative algorithm of Brown and Tarjan modifies its input—it inserts the elements from
one list into the other. This is clearly undesirable in the suggested application since it will destroy
the original term lists, which presumably need to be reused. Copying the inputs before the operation
is not efficient since the set operations take sublinear time. If the set operations can be implemented
purely functionally, however, the result set will share data with the input without modifying the
input (the operations are fully persistent). This would not only save the original set for each term,
but it would allow caching of partial results. Figure 1 shows an example of such caching.

For general inputs, the O(mIg(~ + 1)) bound is a lower bound for the list merging problem.

Orchid (.5 Million) Rose (8 Million)
Purple (4.3 Million) Orchid or Rose (8.3 Million) Hardy (1.3 Million)
(Orchid or Rose) and Purple (.3 Million) (Orchid or Rose) and Hardy (.15 Million)

Figure 1: An example set of searches that reuse the cached result “orchid or rose”. The numbers
are the approximate size of each set based on the AltaVista search engine.

If we make some assumptions about the inputs, however, the bounds can be improved. Carlsson,
Levcopoulos and Petersson [9] considered a block metric & = Block(X,Y) which represents the
minimum number of blocks that the lists need to be broken into before being recombined into one
list. Given this metric they present an algorithm for static merging with bounds O(klg(%+1)). The
static merging problem only generates cross pointers that show where the blocks from one list can
be inserted into the other, but does not actually merge the results. It is not hard to show, however,
that given split and join operations that run in O(log(min(|S;|,|S2|))) time, regular merging and
all the set operations can be implemented in O(klg(% + 1)) time [20]. Demaine, Lépez-Ortiz and
Munro extended this to methods for taking the union, intersection and difference on multiple sets.
These methods do not parallelize easily since they involve sequentially pulling elements off of each
input from one end.

The O(klg(% + 1)) bound can be met in the purely functional context with a functional rep-
resentation of a sorted list that supports split and join in O(log(min(|7}],|7%]))) time. Kaplan
and Tarjan [18, 17] developed such a structure based on 2-3 trees. The structure is described in
Section B, in the Appendix. They point out that the structure can be used to implement the list-
merging algorithm of Brown and Tarjan [8] with an optimal O(mlog(2-+1)) time bound. However,
the data structure they use is somewhat complex, the Brown and Tarjan list-merging algorithm
does not give the stronger O(klg(% + 1)) time bounds, and the extension based on split and join
mentioned in the previous paragraph does not parallelize.

In this paper we develop very simple functional data structures for representing sets based on
Treaps [2]. For the sequential set operations presented in Section 3 we require only the trivial
technique of flipping the pointers along the left spine of a Treap. Our parallel set operations
require that we flip the pointers along both spines. All of our algorithms require O(klg(% + 1))
expected work, and our parallel algorithms operate in O(log? n) expected depth. We present all the
code for all our algorithms—the only exception is for some symmetric routines for left and right
spines in which we only show the left version.! We also present some experimental results that
demonstrate that the constants in the work bounds are reasonably small. The experiments show
that our algorithm does slightly better than the Kaplan and Tarjan algorithm in terms of number
of comparisons.

Related Work. All the techniques we know of for implementing fast set operations originate from
work on finger searching [14]. The idea of finger searching is that, given a pointer (or “finger”)
to any key in a search structure, it should be possible to find nearby keys in faster than the
usual O(log(n)) time. Many types of balanced trees permit finger searches using parent pointers.
Unfortunately, parent pointers imply pointer cycles, which cannot be constructed using purely
functional programming. The solution we use for this problem is to flip the pointers along one or
both spines of the tree—each node along the left spine points to its parent instead of its left child,
and each node along the right spine points to its parent instead of its right child. Tarjan and Van
Wyck [26] describe this data structure as a “heterogeneous finger search tree”.

Cole et al. [10] showed that splay trees can be used to implement finger searches. Splay trees
can easily be made functional, and this technique is much simpler than the others mentioned, but
the bounds are amortized. Amortized bounds are weak for data structures that may have multiple
futures since an application could perform many operations on the same version of a structure
(consider the two operations on “Orchid or Rose” in Figure 1). If that version of the structure had
a high potential value, the amortized bounds might not hold.

"We have also left the parallel intersection and difference code from this submitted version.

Demaine, Lépez-Ortiz, and Munro [12] considered information-theoretic lower-bounds on the
set operations which are stronger than the Block Metric bounds in that they take the sizes of
the individual blocks into account. These bounds were shown earlier in the context of binary
set operations [9], but they use some nice analysis tools to extend the bounds to operations on
an arbitrary number of sets (i.e., taking the union of m sets, or taking the intersection of m
sets). They also proposed a sequential algorithm based on persistent B-trees which is optimal with
respect to this bound. In Section 3 we show how to implement a version of their multi-set union
operation using our sequential data structures. We believe it is significantly simpler than their
original algorithm and also believe it is optimal with respect to their stronger bound.

In the parallel setting, previous work has focused either on merging algorithms that take O(n)
work [1, 11, 15, 27, 13, 19] and are optimal when the two sets have nearly equal sizes, or on
multi-insertion algorithms that take O(mlog(n + 1)) work and are optimal when the input val-
ues to be inserted are not presorted [23, 16, 25, 3]. More recently, Blelloch and Reid-Miller [5]
demonstrated a non-functional parallel merging algorithm which operates in O(klog(% + 1)) work
and O(log(m)log(n)) depth using parent pointers. A functional version of this algorithm requires
O(mlog(Z + 1)) work, though the depth does improve to O(log(n)).

2 Definitions

The Block Metric. Carlsson, Levcopoulos, and Petersson [9] define the Block Metric measure
of the presortedness of two lists as follows:

Definition 1
Let X and Y be two sorted sequences of length n and m, respectively, and let Z =< z1, ..., Zn4m >
be the resulting merged sequence. Then

Block(X,Y)=|{i]ll<i<n+mand z € X and z;4; € Y or z; €Y and z;41 € X}||+1

Thus Block measures the number of blocks in the input sequences that appear in the merged
sequence. Note that, if X and Y share some elements, those elements will appear multiple times in
7 and will be counted as belonging to both lists. For example, if X = {1,2} and Y = {2,3,4} then
Z =4{1,2,2,3,4}. Thus z; € X and 23 € Y, and Block(X,Y) = 4. In other words, any duplicate
element is considered to belong to a block of its own.

Carlsson et al. showed that a lower bound for the list merging problem is O(klg(% + 1)),
where k = Block(X,Y). We will present sequential set-operation algorithms that meet that bound
in Section 3 and parallel algorithms that meets that bound in Section 5 and Appendix 7. First,
though, we must develop the appropriate data structures.

Treaps. A treap is a balanced tree in which each key has an associated random priority [2]. In
addition to the standard binary-tree ordering of the keys, a treap maintains the invariant that every
parent has a higher priority than either of its children. When both the keys and priorities in a
treap are unique, there is a unique treap containing those keys and priorities, independent of the
order in which those keys were inserted.

We use two operations to manipulate treaps. The first operation, SPLIT, takes a treap 1T’ and
a key v, and returns a triple (73, v/, T3), such that all keys in T3 are less than v, all keys in T;
are greater than v, and v’ is a duplicate of v if v was in T. The second operation, JOIN, takes two
treaps 11 and T3 such that all keys in 7T} are less than any key in T5. It returns a single treap T

spLIT(T, v)

JOIN(Th, T3) if 7' = null then

if 71 = null then return (null, null, null)
return 75 if v = T .key then

if 75 = null then return (7 .left, T key, T .right)
return 7} if v < T key then

if T} .priority > T5.priority then (Th, m, Ty) « sPLIT(T left, v)
T « JoIN(T7.right, T5) T} + new Treap(Tz, T key, T.right)
return new Treap(7}.left, 71 key, T') return (71, m, T4)

else else \\ v > T key
T < JoIN(T1, T left) (T1, m, Ty) < spL1T (T .right, v)
return new Treap(T', Tz .key, T5.right) T] + new Treap(T left, T .key, T1)

return (77, m, T3)

Figure 2: Pseudocode for JOIN and SPLIT.

containing the keys in 77 UT5. Both of these operations run in O(log(n)) expected work. Code for
these operations is shown in Figure 2.

Seidel and Aragon showed two properties of treaps which we will make use of in this paper.
First, they showed that the expected depth of a treap of size n is O(log(n)). Second, they showed
the Finger Search property: if two keys in a treap are separated by d other keys, then the expected
length of the path between them is O(log(d)). These properties will be useful in proving bounds
on our algorithms.

Biased and Unbiased Treaps. Since all of the priorities in a treap T are drawn from the same
distribution, any key in a treap has an equal chance to be the root. When we split a treap T on a
key v, if we have not looked at T" beforehand then we know nothing about the priorities of the keys
in the resulting treaps 77 and 7T5. Thus those priorities are still random, and so all of the properties
of treaps still hold for T} and T5. We say that such a treap is unbiased.

Definition 2
A treap is unbiased if the priorities of each of its keys are drawn from the same distribution. (That
is, the priorities are identically and independently distributed.)

However, if we look at the priorities in T" before choosing our split, we have to be careful not
to introduce bias into the result. For example, if we use a rule in which we always split 1" on the
rightmost possible key which is still to the left of the root, then the root of our result treap 75
will always be the leftmost element of that treap. In our analysis we can assume that the initial
input treaps to our algorithms are unbiased, but whenever we choose where to split a treap based
on knowledge of its priorities we will need to show that the result is unbiased before making any
assumptions about its balance. This will prove important in the analysis of our parallel union
algorithm in Section 6.

root

handle

Figure 3: An LTreap is a Treap in which the pointers along the left spine are flipped.

3 The Left Spinal Treap

The first new data structure we define is the left spinal treap, abbreviated LTreap. An LTreap is a
treap in which the pointers along the left spine are flipped—that is, each node on the left spine has
a pointer to its right child and a pointer to its parent. (We present an example in Figure 3.) We
maintain a handle into the structure at the leftmost node, and all searches in the structure start
from that node.

We use four functions to manipulate our LTreap data structures. The first function, TOLTREAP,
converts a standard treap into an LTreap; the second, FROMLTREAP, converts an LTreap into a
Treap. The third function, JOINLEFT, joins a Treap onto an LTreap provided that the largest key
in the Treap is less than the smallest key in the LTreap. The fourth function, spLITLEFT, splits
an LTreap on a given key v. It returns a triple consisting of a Treap containing keys less than v,
the key v if it was found, and an LTreap containing keys greater than v. Pseudocode for these
functions can be found in Figure 4.

For convenience, throughout our pseudocode we will use T, T, T}, etc, to refer to Treaps, and
L, L', Ly, etc, to refer to LTreaps.

We need to analyze the work required for these algorithms. TOLTREAP and FROMLTREAP touch
only the nodes along the left spine of the treap; the left spine of a treap contains expected O(log(n))
nodes, so the expected work required for these algorithms is O(log(n)).

Our spLITLEFT algorithm touches only the nodes on the path from the leftmost node in the
LTreap to the predecessor of v in that LTreap. If there are d nodes which are less than v in
the LTreap, then that path has length O(log(d)), so the expected work required for SPLITLEFT is
O(log(d)).

Using JOINLEFT requires the same amount of work as is needed by SPLITLEFT to split the result
into back into its components. Thus the expected work needed for JOINLEFT is O(log(d)) where d
is the number of nodes to the left of the split—that is, the number of nodes in the Treap.

We can also define a “Right Spinal Treap” (RTreap), which is just like an LTreap except that
the pointers are flipped along the right spine rather than the left.

Sequential Set Operations. As an example of how we can use the LTreap we present sequential
algorithms which perform the set operations (See Figure 5). Each of our algorithms uses one split
and one join on each block in the input. Using split and join on a given block costs at most O (log(s))
expected work where s is the size of that block. Thus the total work is O(Ele log(s;)). The
logarithm is convex, so in the worst case each block is the same size and the work is O(klg(% + 1))
where k = Block(Ly, Ly), which is optimal.

TOLTREAPHELPER(T, L) FROMLTREAPHELPER(T, L)

if T'= null then if L = null then
return L return 7'
else else
L' + new LTreap(T key, T .right, L) T" « new Treap(T', L.key, L.child)
return TOLTREAPHELPER (7T .left, L') return FROMLTREAPHELPER (7", L.parent)
ToLTREAP(T) FROMLTREAP (L)
return TOLTREAPHELPER(7 null) return FROMLTREAPHELPER (null,L)

SPLITLEFTHELPER (7', v, L)

T" « new Treap(7', L.key, L.child)

if L.parent # null and k > L.parent.key then
return sPLITLEFTHELPER (7", v, L.parent)

else
(T1, m, T,) « spLIT(1”, v)
L' < ToOLTREAPHELPER (7, L.parent)
return (7;, m, L')

JOINLEFTHELPER(T, T3, L)
if L # null and 7'.priority > L.priority then
T4 + new Treap(Ts, L.key, L.child)
return JOINLEFTHELPER(T, T4, L.parent)
else
T" « JoIN(T, T%)
return TOLTREAPHELPER(T", L)

JOINLEFT(T, L)
if 7' = null then
return L

SPLITLEFT(v,L)
if L = null then
return (null, null, null)
else
return sPLITLEFTHELPER (null, v, L)

else
return JOINLEFTHELPER(T, null, L)

Figure 4: Pseudocode for TOLTREAP, FROMLTREAP, JOINLEFT and SPLITLEFT.

We can also use our LTreap data structures to implement the algorithm of Demaine et al. [12]
for finding the union of multiple sets. This simplifies the code somewhat—we can construct the
data structure at the same time as we locate the blocks, rather than performing the two tasks in
separate phases. Pseudocode is shown in Figure 11, in the Appendix.

Unfortunately, these algorithms do not parallelize. To create parallelizable algorithms we need
a data structure that allows some form of divide-and-conquer.

4 The LRTreap

We have defined data structures which permit finger searches from either the left or the right sides.
We will now create a data structure which combines the two types, allowing finger searches from
either side. This data structure, called an LRTreap, is represented by a triple (L, root, R) where
L is an LTreap containing the keys to the left of the root, and R is an RTreap containing the keys
to the right. We can convert an LRTreap to a standard treap or vice versa in O(log(n)) expected
time just by traversing the spines. In our pseudocode we refer to LRTreaps using the variable Y.
We define two operations, sPLITLR and JOINLR, which can be used on LRTreaps. spLITLR
is a function which splits an LRTreap on a given key, producing two LRTreaps. It works by
testing the key against the root and then calling either SPLITLEFT or SPLITRIGHT as appropriate.
JOINLR does the opposite—it joins two LRTreaps into one by converting one of them to a standard
treap and calling either JOINLEFT or JOINRIGHT. Pseudocode for these operations can be found

SEQINTERSECT(L1, L2) SEQDIFF1(Ly, L2)

if L; = null then if L; = null then
return null return null

(T, v, L%) < SPLITLEFT(L key, L,) (T, v, L%) < sPLITLEFT(L; .key, L1)

L < sEQINTERSECT(LY, L4) if v # null then

if v = null then (To, V', L}) < SPLITLEFT(L; .key, Lq)
return L return SEQDIFF2(LY, L)

else else
T, + new Treap(null, v, null) return sEQDIFF2(LY, L)

return JOINLEFT(T,, L)

SEQDIFF2(Lq, L2)
if L; = null then
return Lo
(T, v, L%) < SPLITLEFT(L; .key, L,)
L + seqQDIrr1(LY, Lq)
return JOINLEFT(T', L)

SEQUNION(Lq, Ls)
if L; = null then
return L,
(T, v, LY) < SPLITLEFT(L, key, L,)
L < seQUNION(LY, L4)
return JOINLEFT(T, L)

Figure 5: Simple set-operation algorithms. seqQDIFF1 subtracts Ly from Ly; SEQDIFF2 subtracts
Ly from L.

in Figure 12, in the Appendix.

Henceforth, when discussing a specific key v, we will denote the number of keys less than v by a
and the number of keys greater than v by b. We wish to show that the spLITLR operation requires
O(log(min(a, b))) expected work.

We know that, if nodes v and v’ are separated in a treap by d nodes, then the expected distance
from v to v’ is O(log(d)). Unfortunately, our algorithm may not always be able to take the shorter
path to the target key because it cannot search along any path that includes the root. The bound
still holds, however:

Theorem 3
The expected work required to split an LRTreap on a key v is O(log(min(a, b))).

Proof: There are three possibilities, depending on where in the treap the root is.

First, the root could be to the left of v. This occurs with probability (a/n), and the expected
work required to find v is O(log(b)).

Similarly, the root could be to the right of v. This occurs with probability (b/n), and the
expected work required to find v is O(log(a)).

Lastly, v could be the root. In this case, we have to convert the whole LRTreap into a standard
treap, perform the operation, and convert it back, which takes O(log(a + b)) work. Fortunately,
this only happens with probability (1/n).

So the total expected work to find v is

alog(b) + blog(a) + log(a + b)
o g)
But when ¢ < b, alog(b) < blog(a) and log(a + b) < b, so this is equivalent to O(blog(a)/n),
which is O(log(a)). Likewise, when b < a, this is equivalent to O(log(b)). Thus the total expected

-~

- T1 A

T2

T2A T2C T2C

Figure 6: The four steps of our algorithm: split T3, split Ty, recurse, rejoin.

work is O(log(min(a, b))). [|

Joining two LRTreaps T; and T3 (where all keys in Ty are less than all keys in T3) requires
touching no more nodes than would be required to split them apart after they were joined. Thus
this bound applies to the join operation as well.

Likewise, we can use SPLITLR and JOINLR to implement search, insert, and delete functions,
so the work bounds for sPLITLR and JOINLR also apply to these functions.

We note that the code as shown in Figure 12 makes two passes along the spines of the smaller
LRTreap. A more practical implementation could gain a constant factor of efficiency by merging
those two passes into one.

5 Set Operations: Union

We now turn our attention to the problem of computing the union of the elements of two treaps
in parallel. Given two sorted sets of keys represented by LRTreaps, we wish to find an LRTreap
containing the union of the two sets.

Our algorithm is illustrated in Figure 6, and can be described in four steps. Given two LRTreaps
T; and Tg, with T;.root.priority > Yy.root.priority, we first split Ty on the root of T;. We then
split Y1 on the two keys of T, that were nearest the previous split. This separates from YT; a
maximal block containing the root. In the third step, we recursively compute the union of the
pieces of the two LRTreaps; and in the fourth step, we join the results back together.

Pseudocode for our algorithm is shown in Figure 7. We use a ‘ ‘ symbol to mark places where a
new thread can be spawned to deal with a recursive call. Note that, should T34 be empty (that is,
if the first split made is trivial), then GREATESTVALUE(Y24) will return NEGATIVE_INFINITY (see
Figure 7). Thus Y14 will also be empty, and UNION(Y14,Y24) will immediately return an empty
LRTreap. A similar case applies if Yoo is empty—so the possibility of trivial splits is handled
without the necessity of checking for them in the code.

Note also that we never use the v, v/, and v"” values returned by our calls to spLITLR. If one of
those values is non-null, then it is a duplicate key and can be safely discarded.

6 Analysis

In this section, all expectations are calculated over the random assignment of priorities to keys in

T.

UNION(Yq, T32) GREATEST VALUE(Y)

if T .root = null then if T.root = null then

return Yo return NEGATIVE_INFINITY
if T5.root = null then if T.R # null then

return YT return T.R key
if Ts.root.priority > T;.root.priority then else

(T1, Ta) « (T2, Tq) return T.root

(Y24, v, Tac) < sPLITLR(Y:, T;.root)

(Y14, v, T}) < sPLITLR(Y, GREATESTVALUE(Y24))
(Tim, v", Ti¢) < sPLITLR(Y), LEASTVALUE(Y2¢))
T4 < UNION(T14, Toa) ||

YT¢ « uNION(T1¢, Tac)

return JOINLR(Y 4, JOINLR(Y15, T¢))

Figure 7: Pseudocode for UNION and for GREATESTVALUE . LEAST VALUE is similar to GREATEST-
VALUE.

In Section 2 we defined an “unbiased” treap to be one in which all of the priorities are identically
and independently distributed. This is important, because our bounds on a treap’s expected depth
only apply when the treap is known to be unbiased. If we make decisions based on the priorities
of the keys in a treap, we may bias the structure. For example, suppose we adopt the rule that
we always split a treap immediately to the left of the highest-priority key in the structure. One of
the result treaps would then be biased—the location of its root would no longer be random. Our
parallel algorithm does make decisions based on the priorities of the keys, and so we need to show
that we do not cause bias in the intermediate treaps.

How can we bound the bias introduced by our algorithm? At any recursive step, we decide which
splits to make based only on the location of the highest-priority root among the two LRTreaps.
We then use splits to remove that root from future recursive steps. This ensures that we do not
introduce bias: at any recursive step, every key is equally likely to be the root.

We formalize this property with the following definition:

Definition 4
An “almost-unbiased” split of an LRTreap is one which is chosen with no knowledge about that
LRTreap other than its root node.

Almost-unbiased splits have an interesting property that we will make use of in our analysis:

Lemma 5
In an unbiased LRTreap T of size n, let N be the number of nodes visited by any almost-unbiased
split. If that split visits N, non-spinal nodes and N spinal nodes, then F[N] < 2E[N,] + 1.

Proof: Our sPLITLEFT and SPLITRIGHT algorithms visit nodes of two categories: spinal nodes
and non-spinal nodes. They first travel up the spine of T until they reach a place to begin the split;
then, they enter the interior of T and split the two LRTreaps apart. Thus we have N = N + N;.

Consider any LRTreap Y’ that has been split off from Y with an almost-unbiased split. The
split was chosen without regard for the priorities of the keys in Y’, so all of those priorities now are
drawn from the same distribution. Thus Y’ is unbiased, so each of its spines has the same expected
length, independent of the root of T. We know that one of those spines contains exactly N, nodes;
the other spine contains at most N5+ 1 nodes. (Some of the non-spinal nodes involved in the split
may have stayed in Y. The root of Y/, however, counts as a spinal node but still contributes 1 to the

g

Figure 8: The path (bold) connecting any k leaves (squares) of a treap to each other and to the
root contains expected O(klg(% + 1)) nodes.

length of each spine of T'.) Thus we have E[N;] < F[N,s]+ 1. We know E[N] = E[Ny] + E[N,s],
so we have F[N] < 2E[N,] + 1. [|

We can now begin to analyze the work required by our algorithm. To do this we will need the
following lemma:

Lemma 6
Given any unbiased treap T, and given k leaves of that treap, there is a unique minimal set of
nodes P (called a “path”) which connects those k leaves to each other and to the root of T', and

E[IP]is O(klg(% +1)).

Proof: The path is unique because the treap is acyclic. To show the size of the path, we consider
an algorithm which traverses exactly that path.

Suppose that we take each of the &k — 1 leaves that the path touches and finger-search for them
in order starting from the root. For each pair of adjacent leaves the finger search will travel up the
tree until it finds the common ancestor of the two, then travel back down to the target leal. The
first search takes O(log(n)) expected work, and the rest take O(log(d)) expected time per search,
where d is the number of keys separating two endpoints. Thus the total work is O (log(n)+3_%_, d;).
The logarithm is convex, so in the worst case all the spaces between the endpoints will be equal,
and the finger-search algorithm will take expected time O(klg(Z +1)).

The finger-searches described above touch exactly the nodes which are on the path we describe,
so there can be at most O(klg(% + 1)) of those nodes. |

We can now state the following theorem:

Theorem 7
The expected work required for the UNION algorithm is O(klg(% + 1)), where k = Block(YT1,T5)
and n = |Tq| + | T3]

We defer the proof to Appendix A.
Parallel Performance. We still need to consider the parallel performance of this algorithm. We
can easily make our algorithm parallel by spawning separate threads for each recursive call. Since

each call deals with a separate portion of the LRTreap, each thread will read and write from a
separate part of the memory, so the algorithm will run on an EREW PRAM.

10

We would like to analyze the depth of our algorithm. Observe that, every time the algorithm
recurses, the root is cut out of one of the LRTreaps. Thus the depth of the part of that LRTreap
in the next recursion will be one less. That means that the sum of the depths of the LRTreaps
decreases at each recursion. The expected depth of an LRTreap is O(log(n)), so the depth of the
recursion is O(log(n)).

At each step of the recursion, the algorithm does at most O(log(n)) expected work, so the total
depth of the algorithm is O(log*(n)). To map this onto an EREW PRAM we need to deal with
load-balancing. This can be done with a primitive scan operation or by including the depth of a
scan in our time bound.

7 Set Operations: Intersect and Difference

With only slight modifications, we can also use our UNION algorithm to find the intersection or
difference of two sets. Code, description and analysis for these operations will be included in the
final version of our paper.

8 Future Work

One interesting avenue for future work would be to improve the parallel depth of this algorithm.
Suppose we let n, m be the sizes of the two inputs, with n > m. At present our algorithm always
chooses the higher-priority root among the two treaps for the first split. This results in a parallel
depth of O(log?(n)). If instead we let our algorithm choose the lower-priority root, then the recursive
call depth drops to O(log(m)), so the total depth drops to O(log(n)log(m)). Unfortunately, this
leads to the intermediate treaps becoming biased, which violates our work bound for this algorithm.
If we use Kaplan and Tarjan’s structure, though, bias ceases to be a problem, and the modification
we described above will work.

References

[1] R. J. Anderson, E. W. Meyer, and M. K. Warmuth. Parallel approximation algorithms for bin
packing. Information and Computation, 82:262-277, 1989.

[2] C. R. Aragon and R. G. Seidel. Randomized search trees. In Proceedings of the 30th Annual
Symposium on Foundations of Compuler Science, pages 540-545, 1989.

[3] A. Biumker and W. Dittrich. Fully dynamic search trees for an extension of the BSP model.
In Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 233-242, 1996.

[4] G. Blelloch, H. Burch, K. Crary, R. Harper, G. Miller, and N. Walkington. Persistent trian-
gulations. To appear in the Journal of Functional Programming, 2001.

[5] G. Blelloch and M. Reid-Miller. Fast set operations using treaps. In Proc. 10th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 16-26, June 1998.

[6] G. E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3):85-97,
Mar. 1996.

11

[7] M. R. Brown and R. E. Tarjan. A fast merging algorithm. Journal of the Association for
Computing Machinery, 26(2):211-226, Apr. 1979.

[8] M. R. Brown and R. E. Tarjan. Design and analysis of a data structure for representing sorted
lists. STAM Journal of Computing, 9(3):594-614, Aug. 1980.

[9] S. Carlsson, C. Levcopoulos, and O. Petersson. Sublinear merging and natural merge sort. In
Proceedings of the International Symposium on Algorithms SIGAL’90, pages 251-260, Tokyo,
Japan, Aug. 1990.

[10] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the dynamic finger conjecture for splay
trees. i. splay sorting log n-block sequences. SIAM Journal on Computing, 30(1):1-43, 2000.

[11] E. Dekel and I. Azsvath. Parallel external merging. Journal of Parallel and Distributed Com-
puling, 6:623-635, 1989.

[12] E. D. Demaine, A. Lépez-Ortiz, and J. I. Munro. Adaptive set intersections, unions, and differ-
ences. In Proceedings of the Eleventh Annual ACM-STAM Symposium on Discrete Algorithms,
pages 743-752, Jan. 2000.

[13] X. Guan and M. A. Langston. Time-space optimal parallel merging and sorting. IFEFE Trans-
actions on Compulers, 40:592-602, 1991.

[14] L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new representation for linear
lists. In Proc. of the 9th Annual ACM Symposium on Theory of Compuling, pages 49-60, 1977.

[15] T. Hagerup and C. Riib. Optimal merging and sorting on the EREW PRAM. Information
Processing Letters, 33:181-185, 1989.

[16] L. Highan and E. Schenk. Maintaining B-trees on an EREW PRAM. Journal of Parallel and
Distributed Computing, 22:329-335, 1994.

[17] H. Kaplan and R. Tarjan. Purely functional representations of catenable sorted lists. In Proc.
of the 28th Annual ACM Symposium on the Theory of Computing, pages 202-211, May 1996.

[18] H. Kaplan and R. E. Tarjan. Persistent lists with catenation via recursive slow-down. In Proc.
of the 27th Annual ACM Symposium on Theory of Computing, pages 93-102, 1995.

[19] J. Katajainen, C. Levcopoulos, and O. Petersson. Space-efficient parallel merging. In Pro-
ceedings of the 4th International PARLE Conference (Parallel Architectures and Languages
FEurope), volume 605 of Lecture Notes in Computer Science, pages 37-49, 1992.

[20] A. Moffat, O. Petersson, and N. C. Wormald. A tree-based mergesort. Acta Informatica,
35(9):775-793, 1998.

[21] C. Okasaki. Simple and efficient purely functional queues and deques. Journal of Functional
Programming, 5(4):583-592, 1995.

[22] C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

[23] W. Paul, U. Vishkin, and H. Wagener. Parallel dictionaries on 2-3 trees. In Lecture Notes
in Computer Science 143: Proceedings of the 10th Colloguium on Automata, Languages and
Programming, Barcelona, Spain, pages 597-609, Berlin/New York, July 1983. Springer-Verlag.

12

[24] N. Pippenger. Pure versus impure lisp. ACM Transactions on Programming Languages and
Systems (TOPLAS), 19(2):223-238, 1997.

[25] A. Ranade. Maintaining dynamic ordered sets on processor networks. In Proceedings of the
4th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 127-137, San
Diego, CA, June-July 1992.

[26] R. E. Tarjan and C. J. V. Wyck. An O(n log log n)-time algorithm for triangulating a simple
polygon. Siam J. Computing, 17:143-173, 1988.

[27] P. J. Varman, B. R. Iyer, D. J. Haderle, and S. M. Dunn. Parallel merging: Algorithm and
implementation results. Parallel Computing, 15:165-177, 1990.

[28] 1. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images (Second Edition). Morgan Kaufmann Publishing, San Francisco, 1999.

13

A Proof of Theorem 7

Proof: We first consider T;. We know that Ty will eventually be split into O(k) pieces by calls
to sPLITLR. (A single call to sPLITLR might produce two splits of Yy, if the key being split on is
a duplicate key. But both of those splits are counted in our Block metric, so this is still within our
work bound.) We can trace the path P that those splits will take through Ty, and by Lemma 6 we
know that E[|P|]is O(klg(% +1)). Now observe that, regardless of the order in which we perform
the splits, each node in the path will be used as a non-spinal node by exactly one split. (After a
node is used as a non-spinal node, it becomes a spinal node of whatever LRTreap it ends up in.) If
we denote the work required for split ¢ by N (7), then the total work required is:

k
W= N (i)
k
EW] = FE ZN(@') (1)
k
< E|) (2Nns(1)+1)) (2)
= 2B () Nu| +k

= 2B[|P|]+k
= O(klg(z+1)

where (2) follows from (1) and Lemma 5 and the fact that all the splits made by our algorithm
are almost-unbiased.

An identical argument applies to 5.

To see that the joins are within our work bound, consider the final product LRTreap T after all
joins have been made, and imagine reversing the join-order to split it back up into its component
blocks. We would first perform two splits to remove the root block from T. We would then
recursively perform splits to remove the root blocks from the two pieces of T, and so on. The
splits made in this fashion are determined only by the root of the component that is being split.
Thus these splits are almost-unbiased splits, so we can again apply the argument above to see that
the splits cost O(klg(% + 1)) expected work. But joining two LRTreaps together takes the same
amount of work as splitting them apart, so E[Wjoins| = O(klg(% + 1)) as well.

We still need to show that the costs of the trivial splits and joins made are within our work
bound. We define a “trivial” call to UNION to be one in which either T; or Ty is empty. Observe
that such calls immediately return without generating any further calls, so the total number of such
calls can be no more than twice the number of nontrivial calls.

Now, each nontrivial call that is made results in at least one nontrivial join operation. Our
algorithm makes at most 2k nontrivial joins in all, so there can be at most 2k nontrivial calls and
6k total calls. No call can contain more than a constant number of trivial splits and joins, so the
work done on trivial splits and joins is O(k).

Thus the total expected work required is O(klg(% + 1)). |

14

B Discussion

We have already mentioned the data structure of Kaplan and Tarjan [17] which allows splits and
joins in worst-case O(log(min(a,b))) time. We used treaps to implement a similar data structure;
for comparison, we will describe their structure here to provide an indication of its complexity.

We start by defining a 6-list to be a list that can contain no more than 6 elements. We can then
recursively represent a sorted list L as follows. A list L contains three pieces: a prefix, a suffix, and
a sub-list. The prefix and suffix are 6-lists; the sub-list ¢(L) is a list whose elements are all either
doubles or triples of elements from L. If L contains 6 or less elements then ¢(L) is empty and all
of the elements are stored in the prefix and suffix.

If we refer to the i-th level list with ¢!(L), then a list can be represented as a stack S(L) in
which the i-th element of S(L) contains pointers to the prefix and suffix of ¢'(L).

An element of ci(L) can be represented as a 2-3 tree of depth i. For ease of searching, the
leftmost key of such a 2-3 tree is stored with the tree itself.

A prefix or suffix is defined to be green if it contains two to four elements, yellow if it contains
one or five elements, and red if it contains zero or six elements. The color of a list is defined to be
the “worst” of the colors of its prefix and suffix, where red is defined to be “worse” than yellow,
which is “worse” than green.

Kaplan and Tarjan maintain the following invariant over every list L:

“If ¢!(L) is a red list then ¢ > 0 and there exists a green list ¢/(L), j < i, such that any list
* (L), j <k <l is yellow.”

In a functional setting, a list L is not actually represented by S(L) but by a different stack S’(L)
in which every maximal sequence of yellow lists is replaced by a single element which contains a
pointer to the sequence. The sequence is stored as a stack with the lowest-order list on top. This
allows constant-time access to the topmost non-yellow list in any stack.

The structure described above permits implementations of spLIT and JOIN which operate in
O(log(min(a, b))) time, where a and b are the sizes of the pieces involved. With minor modifications
we can allow the structure to keep track of a key which is near the midpoint of the list. spLIT,
JOIN, and GETMIDPOINT are the only operations that are required for our UNION, INTERSECT, and
DIFFERENCE algorithms, so we can use the structure described above as a substitute for our treap
data structures.

C Implementation

We have implemented our algorithms in Java using both our Treap-based structures and Kaplan
and Tarjan’s 2-3-tree-based structures. (Our implementation of the 2-3-tree-based structures was
only partial: it did not compress maximal sequences of yellow lists into one stack entry as described
above. This affects the time bound of the structure but does not alter the number of comparisons
it performs.) We conducted tests of our algorithms under varying conditions, merging disjoint lists
of sizes n and m. We used four different distributions of random data. Our tests are shown in
Figure 9.

For the first method the block sizes were geometrically distributed with mean 10. Blocks were
created and assigned to sets until the total size of the two sets reached 2n. For this distribution
the value recorded for n is an average, not an exact value.

For the second method the keys were perfectly interleaved—that is, each block had size 1. This
represents worst-case performance for our algorithm, since each set had to be completely broken
down into keys before being reformed. The x-axis shows the number of keys in each set.

15

geonetric per f ect

bl ock sizes i nterleaving
7 7
6 B
5 5 ———
4 4]
Sl
2
1
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
n <t housands> n <t housands>
random wal k random wal k
m= n m = 100
7 7
6 6
5 5
4 4
3l
2
1
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
n <t housands> n <t housands>

Figure 9: The performance constants of our algorithm using parallel 2-3 trees (solid line), parallel
treaps (dotted line), sequential 2-3 trees (dot-dashed line), and sequential treaps (dashed line).

For the third method we generated the data through random walks. Datapoints were generated
as a list in which the difference between any datapoint and its successor was a random variable
uniformly distributed on the range [—.5,.5). The lists were then sorted and converted to trees. The
x-axis shows the number of keys in each set.

For the fourth method we also generated the data through random walks, but one of the sets
was fixed to a size of 100 keys. Our performance factor improved with n in this case because the
average size of each block increased with n. The x-axis shows the number of keys in the set whose
size was not fixed.

In all tests we performed 100 trials at each datapoint. For each trial, we counted the number of
comparisons made during the merge and divided by k log(HTm—l—l) to find the constant performance
factor involved in our algorithm. The total included comparisons to the POSITIVE_INFINITY and
NEGATIVE_INFINITY values returned when invoking GREATESTVALUE or LEASTVALUE on an empty
structure; these values were independent of the underlying implementation, so this did not bias our
results.

Although the performance constants appear to depend on mean block size, they are independent
of list size for sufficiently large n. Noting this, we created some simulations in which we fixed
n =~ 10000 and varied the block size. The results are shown in Figure 10.

16

geonetric bl ock sizes geonetric bl ock sizes

. m+ n = 20000 . m+ n = 20000

6 6

5 5

4 4

3 T — 3

2 ———— 2

1 1

100 200 300 400 500 600 700 800 1.5 2 2.5 3 3.5 4
nean bl ock size mean bl ock size

Figure 10: The performance constants of our algorithm using parallel 2-3 trees (solid line), parallel
treaps (dotted line), sequential 2-3 trees (dot-dashed line), and sequential treaps (dashed line). The
right plot is the same as the left, but with a different scale.

MULTIUNIONHELPER(L,())
if SEMPTY(Q) then
return L
(v, L") < DELETEMIN(Q)
(T, v, L) « spLITLEFT(v, L)
if L # null then
Q) < INSERT(Q,L.key,L)
L + MurTIUNIONHELPER(L, Q)
return JOINLEFT(T', L)

MULTIUNION(Ls)

@ = new Queue()

foreach L in Ls
Q) + INSERT(Q,L.key,L)
return MULTIUNIONHELPER (null, Q)

Figure 11: A simple variant of the multiunion algorithm of Demaine et al. [12] using LTreaps. The
INSERT((), k, d) routine places the data d into a priority queue () based on the key k. We assume
that multiple consecutive DELETEMINS of the same key take constant time after the first deleteMin.

17

TOLRTREAP(T)
if 7' = null then
return new LRTreap(null, null, null)
L < TOLTREAP (T left)
R < ToRTREAP(T right)
return new LRTreap(L, T .key, R)

JOINLR(Y4, T3)

if T .root = null then
return T,

if To.root = null then
return T,

if T;.root.priority > Ty.root.priority then
T5 + FROMLRTREAP(Y,)
R’ « JoINRIGHT(Y1.R, T5)
T < new LRTreap(Y;.L,Y; .root, R')
return T

else
T1 + FROMLRTREAP(Y)
L' « joiNLEFT(Y,.L, T})
T < new LRTreap(L’, T3.root, T2.R)
return T

Figure 12: Pseudocode for TOLRTREAP,

FROMLRTREAP(Y)
if T.root = null then
return null
T1 «+ FROMLTREAP(Y.L)
T; « FROMRTREAP(YT.R)
return new Treap(7y, T.root, T5)

spLITLR(Y, v)

if T.root = null then
return (7, null, 1)

if T.root == v then
Y1 < TOLRTREAP(FROMLTREAP(Y.L))
T, < TOLRTREAP(FROMRTREAP(Y.R))
return (Y, YT.root, T5)

if T.root > v then
(T, m, L'y - spLITLEFT(v, T.L)
T; < ToLRTREAP(T)
T2 ¢« new LRTreap(L’,Y.root,YT.R)
return (T;,m,Y2)

else \\ T.root < v
(R', m, T) « sPLITRIGHT (v, T.R)
T; < new LRTreap(Y.L,Y.root,R’)
T, < ToLRTREAP(T)
return (T;,m,Y2)

FROMLRTREAP, JOINLR and spLITLR.

18

