Given a set of objects and a similarity (or distance) measure among the objects, cluster into groups of similar (close) objects.

Also called:
- Unsupervised learning
- Classification
- Typology
- Numerical taxonomy

Applications
- **Biology**: Multiple alignments, evolutionary trees
- **Business**: Market research, risk analysis
- **Liberal arts**: Classifying painters, writers, musicians
- **Sociology**: Personality types, classifying criminals, classifying survey results.
- **Computer Science**: Compression, information retrieval, text mining, image segmentation, recommender systems, anomaly detection

Types of clustering
- Hard vs. soft
- Hierarchical vs flat
- Distance vs similarity based

Distance metrics:
- Euclidean, Minkowski, Hamming, Edit, ...

Similarity measures:
- Cosine, Kernel functions, or $S_{ij} = (1 + d_{ij})$
Main Approaches

- Centroid based: K-means
- Distribution/Model-based (EM)
- Mixture of gaussians
- Spectral
- Agglomerate
- Density based
- Neural nets

K-means

K-clustering: given a metric space \((X,d)\), and a point set \(S \subset X\) partition \(S\) into \(k\) sets \(C_1, C_2, \ldots, C_k\)

Cost: \(\phi(C) = \sum_{i=1}^{k} \min_{x \in C_i} \sum_{x \in C_i} d(c, x)^2\)

Goal: minimize the cost
Problem is NP-hard. Can find approximations.
Typically looking for an approximation.
Related to expectation-maximization, mixture of gaussians, and k-median.
Lloyds algorithm for K-means

A greedy local search algorithm:

Start with a set of centers: \(c_1, c_2, \ldots, c_k \) in \(X \)
Repeat until "convergence":
- Assign each \(x \) in \(S \) to nearest center
- Update location of each center to minimize sum of distances to points assigned to it

Will converge but perhaps slowly and perhaps to a local minimum
Often tried with many starting sets
Often dimensionality reduction is applied first

K-means++

Picks the starting set more intelligently:

Pick a center uniformly at random from \(X \) and add to centers \(Y \) (initially empty)
For \(k-1 \) steps:
- For each \(x \) in \(X \) calculate min distance \(d(x) \) from points in \(Y \)
- Pick an \(x \) in \(X \) with probability proportional to \(d(x)^2 \) and add to \(Y \)

Gives an \(8(\ln k + 2) \) approximation even without Lloyds
Using Lloyds will only improve the result.

Expectation Maximization (EM)

K-means is a special case.

Start with an arbitrary set of clusters defined by parameters: \(p_1, p_2, \ldots, p_k \)
Repeat until "convergence":
- **Expectation**: Assign each \(x \) in \(S \) to cluster that best matches parameters.
 This can be a probabilistic (soft) assignment
- **Maximization**: Update parameters to best fit the assignment.

Converges to a local maximal likelihood estimator.
EM: mixture of gaussians

Here the parameters are (anisotropic) Gaussians.
The parameters form a matrix
Can deal with elongated structures.
More generally can be any parameterized model of the data
Useful if you know what form the clusters will have.

Spectral Clustering

Input is a similarity graph (often sparse)
- Cosine measure $\langle x, y \rangle / (\|x\| \|y\|)$
- K-nearest neighbor graph
Uses Eigenvectors of the Graph Laplacian
- If W is the weight matrix
- and D is a diagonal matrix summing each row
- $L = D - W$ (often normalized)

GFT Example

Graph Laplacian

$G = (V, E)$ with unitary weights
$D = \text{diag}(\deg(v_1), \ldots, \deg(v_n))$
$L := D - W$

- Symmetric
- Off-diagonal entries non-positive
- Rows sum up to zero
- Has a complete set of orthonormal eigenvectors: $L = \Lambda \Lambda^T$
- $0 = \lambda_0 < \lambda_1 \leq \ldots \leq \lambda_n$
The Eigenvectors

First is trivial (all 1s) with eigenvalue 0 (if normalized)
The second gives information about how well the graph can be separated.

Cheeger constant:
\[E(A, \nabla A)/|A| \text{ for any } A, |A| < |V|/2 \]
A measure of how well graph separates
Related to expander graphs (do not separate)
Related to second eigenvalue.

Agglomerate Clustering

Hierarchical: bottom up
Assuming a distance measure

Initially one group per object: \(G = P \)

While \(|G| > 1\)
find "closest" pair in \(G \) and join pair into group

Algorithms vary depending on distance between groups.
Agglomerate: Distances

Choice 1: min distance (single linkage)
Choice 2: max distance (complete linkage)
Choice 3: centroid distance

Min Spanning Tree

Choice 4: average distance
Choice 5: Min sum of squares (Ward's method)

$$SS(G) = \frac{1}{2|E|} \sum_{e \in G, y \in G} d(x, y)^2$$

$$SS(G_{12}) = SS(G_1) - SS(G_2)$$
Heap-based Algorithm

Initialize KD-Tree with elements
Initialize heap with best match for each element
Repeat {
 Remove best pair \(<A, B>\) from heap
 If A and B are active clusters {
 Create new cluster \(C = A + B\)
 Update KD-Tree, removing A and B and inserting C
 Use KD-Tree to find best match for C and insert into heap
 } else if A is active cluster {
 Use KD-Tree to find best match for A and insert into heap
 }
} until only one active cluster left

Walter, Bala, Kulkarni, Pingali
Main Approaches

Centroid based: K-means
Distribution/Model-based (EM)
Mixture of gaussians
Spectral
Agglomerate
Density based
Neural nets

Examples