Linear and Integer Programming

Linear or Integer programming

minimize \(z = c^T x \)
subject to \(Ax = b \)
\(x \geq 0 \)
\(c \in \mathbb{R}^n, \quad b \in \mathbb{R}^m, \quad A \in \mathbb{R}^{m \times n} \)

Linear programming: \(x \in \mathbb{R}^n \) (polynomial time)

Integer programming: \(x \in \mathbb{Z}^n \) (NP-complete)

Very general framework, especially IP

How important is optimization?

- 50+ packages available
- 1300+ papers just on interior-point methods
- 100+ books in the library
- 10+ courses at most Universities
- 100s of companies
- All major airlines, delivery companies, trucking companies, manufacturers, …

make serious use of optimization.

Related Optimization Problems

Unconstrained optimization

\[\min \{ f(x) : x \in \mathbb{R}^n \} \]

Constrained optimization

\[\min \{ f(x) : c_i(x) \leq 0, \quad i \in I, \quad c_j(x) = 0, \quad j \in E \} \]

Quadratic programming

\[\min \{ \frac{1}{2} x^T Q x + c^T x : a_i^T x \leq b_i, \quad i \in I, \quad a_j^T x = b_j, \quad j \in E \} \]

Convex programming

\[\min \{ f(x) : f_i(x) \leq b_i, \quad i \in I, \quad f, f_i \text{ are convex} \} \]

Mixed Integer Programming

\[\min \{ c^T x : A x = b, \quad x \geq 0, \quad x_i \in \mathbb{Z}, \quad i \in I, \quad x_r \in \mathbb{R}, \quad r \in R \} \]
Linear+Integer Programming Outline

Linear Programming
- General formulation and geometric interpretation
- Simplex method
- Ellipsoid method
- Interior point methods

Integer Programming
- Various reductions of NP hard problems
- Linear programming approximations
- Branch-and-bound + cutting-plane techniques
- Case study from Delta Airlines

Applications of Linear Programming
1. A substep in most integer and mixed-integer linear programming (MIP) methods
2. Used to approximate various NP-Hard problems
3. Selecting a mix: oil mixtures, portfolio selection
4. Distribution: how much of a commodity should be distributed to different locations.
5. Allocation: how much of a resource should be allocated to different tasks
6. Network Flows

Linear Programming for Max-Flow
Create two variables per edge: \(x_1, x'_1 \)
Create one equality per vertex:
\[x_1 + x_2 + x_3 = x'_1 + x'_2 + x'_3 \]
and two inequalities per edge:
\[x_1 \leq 3, \ x'_1 \leq 3 \]
add edge \(x_0 \) from out to in
maximize \(x_0 \)

In Practice
In the “real world” most problems involve at least some integral constraints.
- Many resources are integral
- Can be used to model yes/no decisions (0-1 variables)
Therefore “1. A subset in integer or MIP programming” is the most common use in practice
Algorithms for Linear Programming

- **Simplex** (Dantzig 1947)
- **Ellipsoid** (Khachian 1979)
 - First algorithm known to be polynomial time
- **Interior Point**
 - First practical polynomial-time algorithms
 - Projective method (Karmarkar 1984)
 - Affine Method (Dikin 1967)

Many of the interior point methods can be applied to nonlinear programs - these not known to be poly. time.

State of the art

1 million variables
10 million nonzeros
No clear winner between Simplex and Interior Point
- Depends on the problem
- Interior point methods are subsuming more and more cases
- All major packages supply both

The truth: the sparse matrix routines make or break both methods.
The best packages are highly sophisticated.

Comparisons, 1994

<table>
<thead>
<tr>
<th>problem</th>
<th>Simplex (primal)</th>
<th>Simplex (dual)</th>
<th>Barrier + crossover</th>
</tr>
</thead>
<tbody>
<tr>
<td>binpacking</td>
<td>29.5</td>
<td>62.8</td>
<td>560.6</td>
</tr>
<tr>
<td>distribution</td>
<td>18,568.0</td>
<td>won't run</td>
<td>too big</td>
</tr>
<tr>
<td>forestry</td>
<td>1,354.2</td>
<td>1,911.4</td>
<td>2,348.0</td>
</tr>
<tr>
<td>maintenance</td>
<td>57,916.3</td>
<td>89,890.9</td>
<td>3,240.8</td>
</tr>
<tr>
<td>crew</td>
<td>7,182.6</td>
<td>16,172.2</td>
<td>1,264.2</td>
</tr>
<tr>
<td>airfleet</td>
<td>71,292.5</td>
<td>108,015.0</td>
<td>37,627.3</td>
</tr>
<tr>
<td>energy</td>
<td>3,091.1</td>
<td>1,943.8</td>
<td>858.0</td>
</tr>
<tr>
<td>4color</td>
<td>45,870.2</td>
<td>won't run</td>
<td>too big</td>
</tr>
</tbody>
</table>

Formulations

There are many ways to formulate linear programs:
- **Objective (or cost) function**
 - Maximize $c^\top x$, or
 - Minimize $c^\top x$, or
 - Find any feasible solution
- **(in)equalities**
 - $Ax \leq b$, or
 - $Ax \geq b$, or
 - $Ax = b$, or any combination
- **Nonnegative variables**
 - $x \geq 0$, or not

Fortunately it is pretty easy to convert among forms.
Formulations

The two most common formulations:

1. minimize $c^T x$
 subject to $Ax \geq b$
 $x \geq 0$

 e.g.
 $7x_1 + 5x_2 \geq 7$
 $x_1, x_2 \geq 0$

2. minimize $c^T x$
 slack variables
 subject to $Ax = b$
 $x \geq 0$

 e.g.
 $7x_1 + 5x_2 - y_1 = 7$
 $x_1, x_2, y_1 \geq 0$

More on slack variables later.

Geometric View

A **polytope** in n-dimensional space

- Each inequality corresponds to a half-space.
- The “feasible set” is the intersection of the half-spaces.
- This corresponds to a polytope
- The optimal solution is at a corner.

Simplex moves around on the surface of the polytope

Interior-Point methods move within the polytope

Notes about higher dimensions

For n dimensions and no degeneracy

Each corner (extreme point) consists of:

- n intersecting n-1 dimensional **hyperplanes**

 e.g. 3, 2d planes in 3d
- n intersecting **edges**

 Each edge corresponds to moving off of one hyperplane (still constrained by n-1 of them)

Corners can be exponential in n (e.g. a hypercube)

Simplex will move from corner to corner along the edges
Optimality and Reduced Cost

The Optimal solution must include a corner. The Reduced cost for a hyperplane at a corner is the cost of moving one unit away from the plane along its corresponding edge.

\[r_i = z \cdot e_i \]

For minimization, if all reduced cost are non-negative, then we are at an optimal solution. Finding the most negative reduced cost is a heuristic for choosing an edge to leave on.

Reduced cost example

In the example the reduced cost of leaving the plane \(x_1 \) is \((-2,-3) \cdot (2,1) = -7\) since moving one unit off of \(x_1 \) will move us \((2,1)\) units along the edge. We take the dot product of this and the cost function.

Simplex Algorithm

1. Find a corner of the feasible region
2. Repeat
 A. For each of the \(n \) hyperplanes intersecting at the corner, calculate its reduced cost
 B. If they are all non-negative, then done
 C. Else, pick the most negative reduced cost This is called the entering plane
 D. Move along corresponding edge (i.e. leave that hyperplane) until we reach the next corner (i.e. reach another hyperplane) The new plane is called the departing plane
Example

Step 1

Step 2

Departing

Entering

\[z = -2x_1 - 3x_2 \]

\[x_2 \]

\[x_1 \]

Simplifying

Problem:
- The \(Ax \leq b \) constraints not symmetric with the \(x \geq 0 \) constraints.
 We would like more symmetry.

Idea:
- Make all inequalities of the form \(x \geq 0 \).
 Use "slack variables" to do this.
 Convert into form:
 \[
 \begin{align*}
 \text{minimize} & \quad c^T x \\
 \text{subject to} & \quad Ax = b \\
 & \quad x \geq 0
 \end{align*}
 \]

Example, again

\[
\begin{align*}
\text{minimize} & \quad z = -2x_1 - 3x_2 \\
\text{subject to} & \quad x_1 - 2x_2 + x_3 = 4 \\
& \quad 2x_1 + x_2 + x_4 = 18 \\
& \quad x_2 + x_5 = 10 \\
& \quad x_1, x_2, x_3, x_4, x_5 \geq 0
\end{align*}
\]

The equality constraints impose a 2d plane embedded in 5d space, looking at the plane gives the figure above.

Standard and Slack Form

Standard Form

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b \\
& \quad x \geq 0
\end{align*}
\]

\(|A| = m \times n \\
i.e. \, m \text{ equations, } n \text{ variables}
\]

Slack Form

\[
\begin{align*}
\text{minimize} & \quad c^T x' \\
\text{subject to} & \quad A' x' = b \\
& \quad x' \geq 0
\end{align*}
\]

\(|A'| = m \times (m+n) \\
i.e. \, m \text{ equations, } m+n \text{ variables}
\]

\[
\begin{align*}
& x_1 \leq 10 \\
& 2x_1 + x_2 \leq 18 \\
& x_2 \leq 2x_3 \leq 4 \\
& 2x_1 + x_4 + x_5 = 18
\end{align*}
\]
Using Matrices

If before adding the slack variables A has size $m \times n$ then after it has size $m \times (n + m)$
m can be larger or smaller than n

$$A = \begin{bmatrix} 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{bmatrix}$$

Assuming rows are independent, the solution space of $Ax = b$ is a n dimensional subspace.

Gauss-Jordan Elimination

$$B_{ij} = \begin{cases} A_{ij} - \frac{A_{ik} A_{lj}}{A_{lk}} & i \neq l \\ \frac{A_{ij}}{A_{lk}} & i = l \end{cases}$$

Simplex Algorithm, again

1. Find a corner of the feasible region
2. Repeat
 A. For each of the n hyperplanes intersecting at the corner, calculate its reduced cost
 B. If they are all non-negative, then done
 C. Else, pick the most negative reduced cost
 This is called the entering plane
 D. Move along corresponding line (i.e. leave that hyperplane) until we reach the next corner
 (i.e. reach another hyperplane)
 The new plane is called the departing plane

Simplex Algorithm (Tableau Method)

This form is called a Basic Solution
- the n “free” variables are set to 0
- the m “basic” variables are set to b'
A valid solution to $Ax = b$ if reached using Gaussian Elimination
Represents n intersecting hyperplanes
If feasible (i.e. $b' \geq 0$), then the solution is called a Basic Feasible Solution and is a corner of the feasible set
Corner

basic variables free variables

1 0 0 1 -2 4
0 1 0 2 1 18
0 0 1 0 1 10
0 0 0 -2 -3 0

Corner

Corner

Corner

Corner

1 0 0 -5 -1 -2
0 1 0 2.5 1 20
0 0 1 .5 1 12
0 0 0 -3.5 -3 -6

1 0 0 1 -2 4
0 1 0 -2 5 10
0 0 1 0 1 10
0 0 0 2 -7 8

1 0 0 .2 .4 8
0 1 0 -.4 .2 2
0 0 1 .4 -.2 8
0 0 0 -.8 1.4 22
Simplex Method Again

Once you have found a basic feasible solution (a corner), we can move from corner to corner by swapping columns and eliminating.

ALGORITHM

1. Find a basic feasible solution
2. Repeat
 A. If \(r \) (reduced cost) \(\geq 0 \), DONE
 B. Else, pick column with most negative \(r \)
 C. Pick row with least positive \(b'/(selected \, column) \)
 D. Swap columns
 E. Use Gauss-Jordan elimination to restore form

Tableau Method

A. If \(r \) are all non-negative then done

B. Else, pick the most negative reduced cost
 This is called the entering plane or variable

Note that in general there are \(n+m \) choose \(m \) corners
Tableau Method

C. Move along corresponding line (i.e. leave that hyperplane) until we reach the next corner (i.e. reach another hyperplane)
 The new plane is called the departing plane

\[
\begin{array}{ccc}
I & F & b' \\
0 & r & z \\
\end{array}
\]

min positive \(b'_j / u_j \)

departing variable

Example

\[
\begin{array}{ccc|c|c}
& x_1 & x_2 & x_3 & x_4 & x_5 \\
1 & 1 & -2 & 1 & 0 & 0 & 4 \\
2 & 0 & 1 & 0 & 1 & 0 & 18 \\
0 & 1 & 0 & 0 & 1 & 0 & 10 \\
-2 & -3 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Find corner

\[
\begin{array}{ccc|c|c}
& x_1 & x_2 & x_3 & x_4 & x_5 \\
1 & 1 & 0 & 0 & 1 & -2 & 4 \\
0 & 1 & 0 & 2 & 1 & 1 & 18 \\
0 & 0 & 1 & 0 & 1 & 0 & 10 \\
0 & 0 & 0 & -2 & -3 & 0 & 0 \\
\end{array}
\]

15-853 Page 37

Tableau Method

D. Swap columns

E. Gauss-Jordan elimination

Example

\[
\begin{array}{ccc|c|c}
& x_1 & x_2 & x_3 & x_4 & x_5 \\
1 & 1 & 0 & 0 & 1 & -2 & 4 \\
0 & 1 & 0 & 2 & 1 & 1 & 18 \\
0 & 0 & 1 & 0 & 1 & 0 & 10 \\
0 & 0 & 0 & -2 & -3 & 0 & 0 \\
\end{array}
\]

15-853 Page 38

Example

\[
\begin{array}{ccc|c|c}
& x_1 & x_2 & x_3 & x_4 & x_5 \\
1 & 0 & 0 & 1 & -2 & 4 \\
0 & 1 & 0 & 2 & 1 & 18 \\
0 & 0 & 1 & 0 & 1 & 10 \\
0 & 0 & 0 & -2 & -3 & 0 \\
\end{array}
\]

15-853 Page 39

Example

\[
\begin{array}{ccc|c|c}
& x_1 & x_2 & x_3 & x_4 & x_5 \\
1 & 0 & 0 & 1 & -2 & 4 \\
0 & 1 & 0 & 2 & 1 & 18 \\
0 & 0 & 1 & 0 & 1 & 10 \\
0 & 0 & 0 & -2 & -3 & 0 \\
\end{array}
\]

15-853 Page 40
Example

\[
\begin{bmatrix}
1 & 0 & -2 & 1 & 0 & 4 \\
0 & 1 & 1 & 2 & 0 & 18 \\
0 & 0 & 1 & 0 & 1 & 10 \\
0 & 0 & -3 & -2 & 0 & 0 \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 2 & 24 \\
0 & 1 & 0 & 2 & -1 & 8 \\
0 & 0 & 1 & 0 & 1 & 10 \\
0 & 0 & 0 & -2 & 3 & 30 \\
\end{bmatrix}
\]

x_1 \ x_2 \ x_3 \ x_4 \ x_5

Example

\[
\begin{bmatrix}
1 & 1 & 0 & 0 & 2 & 24 \\
0 & 2 & 0 & 1 & -1 & 8 \\
0 & 0 & 1 & 0 & 1 & 10 \\
0 & -2 & 0 & 0 & 3 & 30 \\
\end{bmatrix}
\]

x_1 \ x_2 \ x_3 \ x_4 \ x_5

Simplex Concluding remarks

For dense matrices, takes \(O(n(n+m))\) time per iteration.

In practice, sparse methods are used for the iterations.

Can take an **exponential** number of iterations.

Some freedom in choice of entering plane (called pivoting rule).

Sadly, most pivoting rules have bad examples with exponential number of iterations.
Duality

Primal (P):
maximize \(z = c^T x \)
subject to \(Ax \leq b \)
\(x \geq 0 \) (n equations, m variables)

Dual (D):
minimize \(z = y^T b \)
subject to \(A^T y \geq c \)
\(y \geq 0 \) (m equations, n variables)

Duality Theorem: if \(x \) is feasible for \(P \) and \(y \) is feasible for \(D \), then \(cx \leq yb \)
and at optimality \(cx = yb \).

Duality (cont.)

Optimal solution for both

feasible solutions for Dual (maximization) feasible solutions for Primal (minimization)

Quite similar to duality of Maximum Flow and Minimum Cut.

Useful in many situations.

Duality Example

Primal:
maximize: \(z = 2x_1 + 3x_2 \)
subject to:
\(x_1 - 2x_2 \leq 4 \)
\(2x_1 + x_2 \leq 18 \)
\(x_2 \leq 10 \)
\(x_1, x_2 \geq 0 \)

Dual:
minimize: \(z = 4y_1 + 18y_2 + 10y_3 \)
subject to:
\(y_1 + 2y_2 \geq 2 \)
\(-2y_1 + y_2 + y_3 \geq 3 \)
y_1, y_2, y_3 \geq 0

Solution to both is 38 \((x_1 = 4, x_2 = 10), (y_1 = 0, y_2 = 1, y_3 = 2)\)