15-853: Algorithms in the Real World

Locality II: Cache-oblivious algorithms
- Matrix multiplication
- Distribution sort
- Static searching

Cache-Oblivious Algorithms
- Algorithms not parameterized by B or M.
 - These algorithms are unaware of the parameters of the memory hierarchy
- Analyze in the *ideal cache* model — same as the I/O model except optimal replacement is assumed
 - Optimal replacement means proofs may posit an arbitrary replacement policy, even defining an algorithm for selecting which blocks to load/evict.

I/O Model
Abstracts a single level of the memory hierarchy
- Fast memory (cache) of size M
- Accessing fast memory is free, but moving data from slow memory is expensive
- Memory is grouped into size-B blocks of contiguous data

- Cost: the number of *block transfers* (or I/Os) from slow memory to fast memory.

Advantages of Cache-Oblivious Algorithms
- Since CO algorithms do not depend on memory parameters, bounds generalize to multilevel hierarchies.
- Algorithms are platform independent
- Algorithms should be effective even when B and M are not static
Matrix Multiplication

Consider standard iterative matrix-multiplication algorithm

\[Z[i][j] := X[i][k] * Y[k][j] \]

- Where \(X, Y, \) and \(Z \) are \(N \times N \) matrices

\[
\begin{array}{ccc}
\text{for } i = 1 \text{ to } N & \text{do} \\
\text{for } j = 1 \text{ to } N & \text{do} \\
\text{for } k = 1 \text{ to } N & \text{do} \\
Z[i][j] & := & X[i][k] * Y[k][j]
\end{array}
\]

- \(\Theta(N^3) \) computation in RAM model. What about I/O?

How Are Matrices Stored?

How data is arranged in memory affects I/O performance

- Suppose \(X, Y, \) and \(Z \) are in row-major order

\[
\begin{array}{ccc}
\text{for } i = 1 \text{ to } N & \text{do} \\
\text{for } j = 1 \text{ to } N & \text{do} \\
\text{for } k = 1 \text{ to } N & \text{do} \\
Z[i][j] & := & X[i][k] * Y[k][j]
\end{array}
\]

- If \(N \geq B \), reading a column of \(Y \) is expensive \(\Rightarrow \Theta(N) \) I/Os
- If \(N \geq M \), no locality across iterations for \(X \) and \(Y \) \(\Rightarrow \Theta(N^3) \) I/Os

How Are Matrices Stored?

Suppose \(X \) and \(Z \) are in row-major order but \(Y \) is in column-major order

- Not too inconvenient. Transposing \(Y \) is relatively cheap

\[
\begin{array}{ccc}
\text{for } i = 1 \text{ to } N & \text{do} \\
\text{for } j = 1 \text{ to } N & \text{do} \\
\text{for } k = 1 \text{ to } N & \text{do} \\
Z[i][j] & := & X[i][k] * Y[k][j]
\end{array}
\]

- We can do much better than \(\Theta(N^3/B) \) I/Os, even if all matrices are row-major.

Recursive Matrix Multiplication

Compute 8 submatrix products recursively

\[
\begin{array}{ccc}
Z_{11} & := & X_{11}Y_{11} + X_{12}Y_{21} \\
Z_{12} & := & X_{11}Y_{12} + X_{12}Y_{22} \\
Z_{21} & := & X_{21}Y_{11} + X_{22}Y_{21} \\
Z_{22} & := & X_{21}Y_{12} + X_{22}Y_{22}
\end{array}
\]

Summing two matrices with row-major layout is cheap — just scan the matrices in memory order.

- Cost is \(\Theta(N^2/B) \) I/Os to sum two \(N \times N \) matrices, assuming \(N \geq B \).
Recursive Multiplication Analysis

Recursive algorithm:
\[
\begin{align*}
Z_{11} &:= X_{11}Y_{11} + X_{12}Y_{21} \\
Z_{12} &:= X_{11}Y_{12} + X_{12}Y_{22} \\
Z_{21} &:= X_{21}Y_{11} + X_{22}Y_{21} \\
Z_{22} &:= X_{21}Y_{12} + X_{22}Y_{22}
\end{align*}
\]

• \(\text{Mult}(n) = 8 \text{Mult}(n/2) + \Theta(n^2/B) \)
• \(\text{Mult}(n_0) = O(M/B) \)
 when \(n_0 \) for \(X, Y \) and \(Z \) fit in memory

The big question is the base case:
• Suppose an \(X, Y, \) and \(Z \) submatrices fit in memory at the same time
• Then multiplying them in memory is free after paying \(\Theta(M/B) \) to load them into memory

Array storage

• How many blocks does a size-\(N \) array occupy?
 • If it’s aligned on a block (usually true for cache-aware), it takes exactly \(\lceil N/B \rceil \) blocks
 • If you’re unlucky, it’s \(\lceil N/B \rceil + 1 \) blocks. This is generally what you need to assume for cache-oblivious algorithms as you can’t force alignment
 • In either case, it’s \(\Theta(1+N/B) \) blocks

Row-major matrix

• If you look at the full matrix, it’s just a single array, so rows appear one after the other
 • So entire matrix fits in \(\lceil N^2/B \rceil + 1 \Theta(1+N^2/B) \) blocks
Row-major submatrix

• In a submatrix, rows are not adjacent in slow memory

Row-major submatrix

• Need to treat this as k arrays,
• so total number of blocks to store submatrix is $k(k/B+1) = \Theta(k^2/B)$

Is that assumption correct?

Does a $\Theta(JM) \times \Theta(JM)$ matrix occupy at most $\Theta(M/B)$ different blocks?

• We have a formula from before. A $k \times k$ submatrix requires $\Theta(k^2/B)$ blocks,
• so a $\Theta(JM) \times \Theta(JM)$ submatrix occupies roughly $JM + MB$ blocks

• The answer is "yes" only if $\Theta(JM + MB) = \Theta(M)$.
 iff $JM \leq MB$, or $M \geq B^2$.
• If "no," analysis (base case) is broken — recursing into the submatrix will still require more I/Os.

Fixing the base case

Two fixes:
1. The "tall cache" assumption: MB^2.
 Then the base case is correct, completing the analysis.
2. Change the matrix layout.
Without Tall-Cache Assumption

Try a better matrix layout
- The algorithm is recursive. Use a layout that matches the recursive nature of the algorithm
- For example, Z-morton ordering:
 - The line connects elements that are adjacent in memory
 - In other words, construct the layout by storing each quadrant of the matrix contiguously, and recurse

Recursive MatMul with Z-Morton

The analysis becomes easier
- Each quadrant of the matrix is contiguous in memory, so a \(c \times c \) submatrix fits in memory
 - The tall-cache assumption is not required to make this base case work
- The rest of the analysis is the same

Searching: binary search is bad

Example: binary search for element A with block size \(B = 2 \)
- Search hits a a different block until reducing keyspace to size \(\Theta(B) \).
- Thus, total cost is \(\log_2 N - \Theta(\log_2 B) = \Theta(\log_2(N/B)) \approx \Theta(\log_2 N) \) for \(N \gg B \)

Static cache-oblivious searching

Goal: organize \(N \) keys in memory to facilitate efficient searching. (van Emde Boas layout)
1. build a balanced binary tree on the keys
2. layout the tree recursively in memory, splitting the tree at half the height

memory layout
Static layout example

Cache-oblivious searching: Analysis I
- Consider recursive subtrees of size \(\sqrt{B} \) to \(B \) on a root-to-leaf search path.
- Each subtree is contiguous and fits in \(O(1) \) blocks.
- Each subtree has height \(\Theta(\log B) \), so there are \(\Theta(\log B) \) of them.

Cache-oblivious searching: Analysis II
- \(S(N) = 2S(\sqrt{N}) + O(1) \)
- base case \(S(\sqrt{B}) = 1 \)
- base case \(S(B) = 0 \)
- Solves to \(\Theta(\log N) \)

Distribution sort outline
- Analogous to multiway quicksort
 1. Split input array into \(\sqrt{N} \) contiguous subarrays of size \(\sqrt{N} \). Sort subarrays recursively

\[
\sqrt{N}, \text{ sorted}
\]

\[
N
\]
Distribution sort outline

2. Choose \sqrt{N} “good” pivots $p_1 \leq p_2 \leq \ldots \leq p_{\sqrt{N}}$.

3. Distribute subarrays into buckets, according to pivots

Distribution sort analysis sketch

- Step 1 (implicitly) divides array and sorts \sqrt{N} size-\sqrt{N} subproblems
- Step 4 sorts \sqrt{N} buckets of size $\sqrt{N} \leq n_i \leq 2\sqrt{N}$, with total size N
- Step 5 copies back the output, with a scan

Gives recurrence:

$T(N) = \sqrt{N} T(\sqrt{N}) + \sum T(n_i) + \Theta(N/B) + \text{Step 2&3}$

$\approx 2\sqrt{N} T(\sqrt{N}) + \Theta(N/B)$

Base: $T(<M) = 1$

$= \Theta((N/B) \log_{M/B} (N/B))$ if $M \geq B^2$

Distribution sort outline

4. Recursively sort the buckets

5. Copy concatenated buckets back to input array

Missing steps

2. Choose \sqrt{N} “good” pivots $p_1 \leq p_2 \leq \ldots \leq p_{\sqrt{N}}$.

(2) Not too hard in $\Theta(N/B)$

3. Distribute subarrays into buckets, according to pivots

$\sqrt{N} \leq \text{bucket sizes} \leq 2\sqrt{N}$
Naïve distribution

- Distribute first subarray, then second, then third, ...
- Cost is only $O(N/B)$ to scan input array
- What about writing to the output buckets?
 - Suppose each subarray writes 1 element to each bucket. Cost is 1 I/O per write, for N total!

Distribute analysis

Counting only "random accesses" here

- $D(k) = 4D(k/2) + O(k)$
 - Base case: when the next block in each of the k buckets/subarrays fits in memory
 (this is like an M/B-way merge)
 - So we have $D(M/B) = D(B) = \text{free}$

Solves to $D(k) = O(k^2/B)$

\Rightarrow distribute uses $O(N/B)$ random accesses — the rest is scanning at a cost of $O(1/B)$ per element

Better recursive distribution

Given subarrays s_1, \ldots, s_k and buckets b_1, \ldots, b_k

1. Recursively distribute $s_1, \ldots, s_{k/2}$ to $b_1, \ldots, b_{k/2}$
2. Recursively distribute $s_{k/2}, \ldots, s_k$ to $b_{k/2}, \ldots, b_k$
3. Recursively distribute $s_1, \ldots, s_{k/2}$ to $b_{1}, \ldots, b_{k/2}$
4. Recursively distribute $s_{k/2}, \ldots, s_k$ to $b_{k/2}, \ldots, b_k$

Despite crazy order, each subarray operates left to right. So only need to check next pivot.

Note on distribute

If you unroll the recursion, it's going in Z-morton order on this matrix:

- i.e., first distribute s_1 to b_1, then s_1 to b_2, then s_2 to b_1, then s_2 to b_2, and so on.