15-853: Algorithms in the Real World

Locality I: Cache-aware algorithms

- Introduction
- Sorting
- List ranking
- B-trees
- Buffer trees

RAM Model

Standard theoretical model for analyzing algorithms:

- Infinite memory size
- Uniform access cost
- Evaluate an algorithm by the number of instructions executed

Real Machine Example: Nehalem

- CPU
 - ~ 0.4 ns / instruction
 - 8 Registers
- L1 cache
 - size: 64KB
 - line size: 64B
 - access time: 1.5ns
- L2 cache
 - size: 256KB
 - line size: 64B

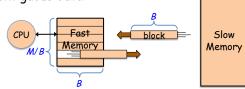
 - access time: 5ns L3

- L3 cache
 - size: 12GB
 - line size: 64B
 - access time: 20ns
- Memory
 - access time: 100ns
- Disc
 - access time: ~4ms = 4x106ns
 - The cost of transferring data is important ⇒ Design algorithms with locality in mind Main Disc Memory

I/O Model

Abstracts a single level of the memory hierarchy

- Fast memory (cache) of size M
- · Accessing fast memory is free, but moving data from slow memory is expensive
- Memory is grouped into size-B blocks of contiguous data



• Cost: the number of block transfers (or I/Os) from slow memory to fast memory.

Notation Clarification

- M: the number of objects that fit in memory, and
- B: the number of objects that fit in a block
- So for word-size (8 byte) objects, and memory size 1Mbyte, M = 128,000

Why a 2-Level Hierarchy?

- It's simpler than considering the multilevel hierarchy
- A single level may dominate the runtime of the application, so designing an algorithm for that level may be sufficient
- Considering a single level exposes the algorithmic difficulties — generalizing to a multilevel is often straightforward
- We'll see cache-oblivious algorithms later as a way of designing for multi-level hierarchies

What Improvement Do We Get?

Examples

- Adding all the elements in a size-Narray (scanning)
- Sorting a size-Narray
- Searching a size-N data set in a good data structure

Problem	RAM Algorithm	I/O Algorithm
Scanning	Θ(N)	Θ(N/B)
Sorting	$\Theta(N \log_2 N)$	$\Theta((N/B)\log_{M/B}(N/B))$
Searching	$\Theta(\log_2 N)$	$\Theta(\log_{B}N)$
Permuting	Θ(N)	$\Theta(\min(N, sort(N)))$

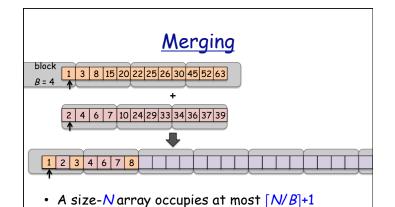
- For 8-byte words on example Nehalem
 - $-B \approx 8$ in L2-cache, $B \approx 1000$ on disc
 - $-\log_2 B \approx 3$ in L2-cache, $\log_2 B \approx 10$ on disc

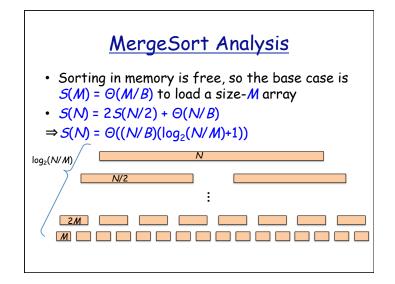
Sorting

Standard MergeSort algorithm:

- Split the array in half
- · MergeSort each subarray
- Merge the sorted subarrays
- Number of computations is O(N logN) on an N-element array

How does the standard algorithm behave in the I/O model?





I/O Efficient MergeSort

• Each block is loaded once during merge,

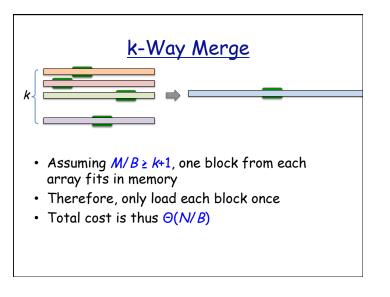
assuming memory size $M \ge 3B$

• Instead of doing a 2-way merge, do a $\Theta(M/B)$ -way merge

IOMergeSort:

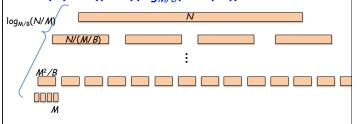
blocks

- Split the array into $\Theta(M/B)$ subarrays
- IOMergeSort each subarray
- Perform a $\Theta(M/B)$ -way merge to combine the subarrays



IOMergeSort Analysis

- Sorting in memory is free, so the base case is $S(M) = \Theta(M/B)$ to load a size-M array
- $S(N) = (M/B) S(NB/M) + \Theta(N/B)$
- $\Rightarrow S(N) = \Theta((N/B)(\log_{M/B}(N/M)+1))$



MergeSort Comparison

Traditional MergeSort costs $\Theta((N/B)\log_2(N/M))$ I/Os on size-Narray

- IOMergeSort is I/O efficient, costing only Θ((N/B)log_{M/B}(N/M))
- The new algorithm saves $\Theta(\log_2(M/B))$ fraction of I/Os.

How significant is this savings?

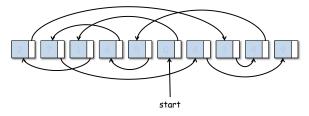
- Consider L3 cache to main memory on Nehalem
 - M = 1 Million, B = 8, N = 1 Billion
 - -1 billion / 8 \times 10 vs.

1 billion / 8 x 1

Not hard to calculate exact constants

List Ranking

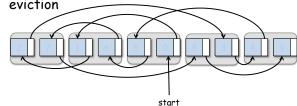
 Given a linked list, calculate the rank of (number of elements before) each element



• Trivial algorithm is O(N) computation steps

List ranking in I/O model

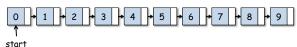
- Assume list is stored in ~N/B blocks!
- May jump in memory a lot.
- Example: M/B = 3, B = 2, least-recently-used eviction



• In general, each pointer can result in a new block transfer, for $\mathcal{O}(N)$ I/Os

Why list ranking?

 Recovers locality in the list (can sort based on the ranking)

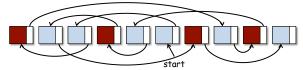


Generalizes to trees via Euler tours

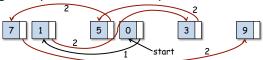
- Useful for various forest/tree algorithms like least common ancestors and tree contraction
- Also used in graph algorithms like minimum spanning tree and connected components

List ranking outline

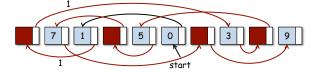
1. Produce an *independent set* of $\Theta(N)$ nodes (if a node is in the set, its successor is not)



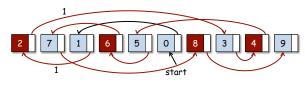
2. "Bridge out" independent set and solve weighted problem recursively



List ranking outline

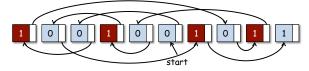


3. Merge in bridged-out nodes

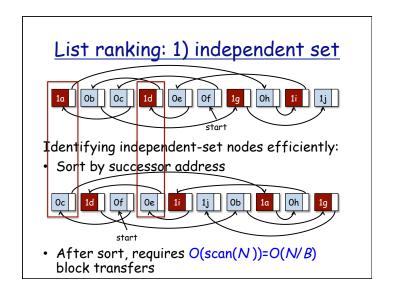


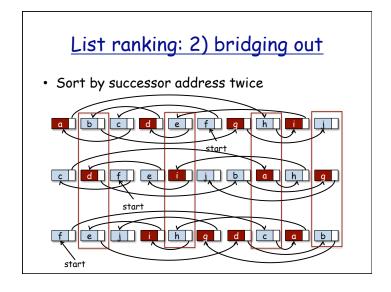
List ranking: 1) independent set

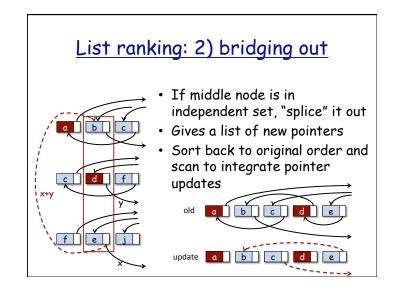
- Each node flips a coin {0,1}
- A node is in the independent set if it chooses 1 and its predecessor chooses 0

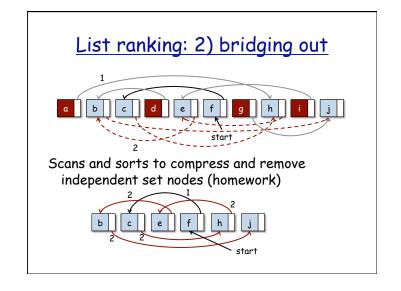


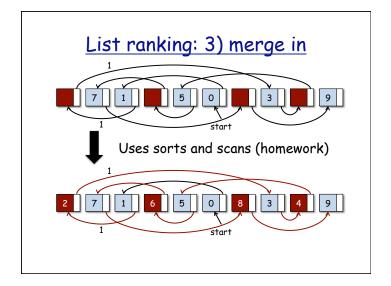
• Each node enters independent set with prob $\frac{1}{4}$, so expected set size is $\Theta(N)$.











List ranking analysis

- 1. Produce an *independent set* of $\Theta(N)$ nodes (keep retrying until random set is good enough)
- 2. "Bridge out" and solve recursively
- 3. Merge-in bridged-out nodes

All steps use a constant number of sorts and scans, so expected cost is $O(\text{sort}(N)) = O((N/B) \log_{M/B} (N/B))$ I/Os at this level of recursion

Gives recurrence R(N) = R(N/c) + O(sort(N))= O(sort(N))

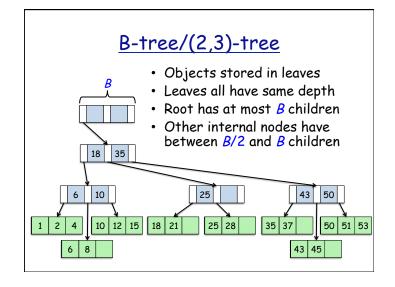
B-Trees

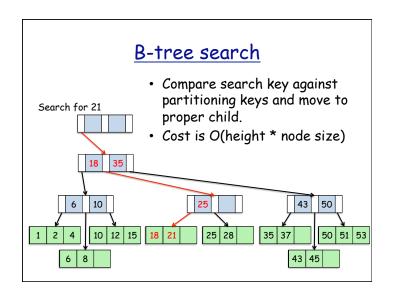
- A B-tree is a type of search tree ((a,b)-tree) designed for good memory performance
- Common approach for storing searchable, ordered data, e.g., databases, filesystems.

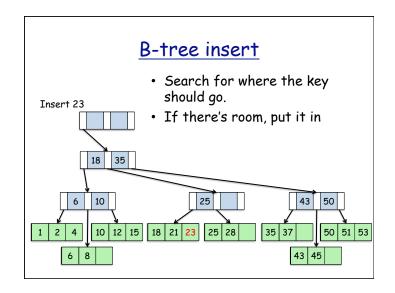
Operations

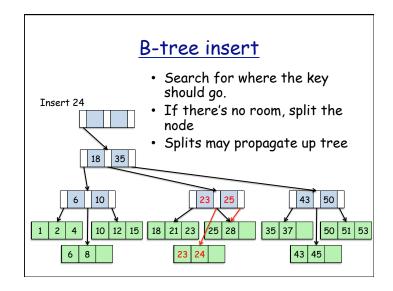
- Updates: Insert/Delete
- · Queries
 - Search: is the element there
 - Successor/Predecessor: find the nearest key
 - Range query: return all objects with keys within a range

- ...









B-tree inserts

- Splits divide the objects / child pointers as evenly as possible.
- If the root splits, add a new parent (this is when the height of the tree increases)
- Deletes are a bit more complicated, but similar — if a node drops below B/2 children, it is merged or rebalanced with some neighbors.

B-tree analysis

Search

- All nodes (except root) have at least $\Omega(B)$ children \Rightarrow height of tree is $O(\log_B N)$
- · Each node fits in a block
- Total search cost is $O(\log_R N)$ block transfers.

Sorting with a search tree?

Consider the following RAM sort algorithm:

- 1. Build a balanced search tree
- 2. Repeatedly delete the minimum element from the tree

Runtime is $O(N \log N)$

Does this same algorithm work in the I/O model?

• Just using a B-tree is $O(N \log_B N)$ which is much worse than $O((N/B) \log_{M/B}(N/B))$

B-tree analysis

Insert (and delete):

- Every split of a leaf results in an insert into a height-1 node.
- In general, a height-h split causes a height-(h+1) insert.
- There must be $\Omega(B)$ inserts in a node before it splits again.
- An insert therefore pays for $\sum (1/B)^h = O(1/B)$ splits, each costing O(1) block transfers.
- Searching and updating the keys along the rootto-leaf path dominates for O(log_BN) block transfers

Buffer tree

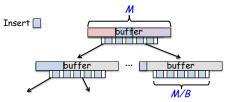
Somewhat like a B-tree:

- when nodes gain too many children, they split evenly, using a similar split method
- · all leaves are at the same depth

Unlike a B-tree:

- queries are not answered online (they are reported in batches)
- internal nodes have $\Theta(M/B)$ children
- nodes have buffers of size $\Theta(M)$

Buffer-tree insert

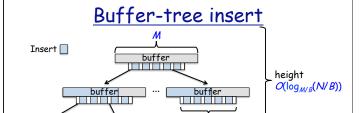


- · Start at root. Add item to end of buffer.
- If buffer is not full, done.
- Otherwise, partition the buffer and send elements down to children.

I/O Priority Queue

Supporting Insert and Extract-Min (no Decreasekey here)

- Keep a buffer of $\Theta(M)$ smallest elements in memory
- Use a buffer tree for remaining elements.
- While smallest-element buffer is too full, insert 1 (maximum) element into buffer tree
- If smallest-element buffer is empty, flush leftmost path in buffer tree and delete the leftmost leafs
- Total cost is $O((N/B) \log_{M/B}(N/B))$ for N ops.
- Yields optimal sort.



- Inserting into a buffer costs O(1+k/B) for k elements inserted
- On overflow, partitioning costs O(M/B) to load entire buffer. Then M/B "scans" are performed, costing O(#Arrays + total size/B) = O(M/B + M/B)
- Flushing buffer downwards therefore costs O(M/B), moving $\Omega(M)$ elements, for a cost of O(1/B) each per level
- An element may be moved down at each height, costing a total of O((1/B) height) = O((1/B)log_{M/B}(N/B)) per element

Buffer-tree variations

- To support deletions, updates, and other queries, insert records in the tree for each operation, associated with timestamps.
- As records with the same key collide, merge them as appropriate.

Examples of applications:

- DAG shortest paths
- Circuit evaluation

Analysis ideas:

Computational geometry applications