15-853: Algorithms in the Real World

Parallelism: Lecture 4
Dynamic Programming
Scheduling

Edit Distance: Dynamic Programming

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>t</th>
<th>c</th>
<th>a</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>t</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: can be filled in any order as long as the cells to the left and above are filled.
Can follow path back through matrix to construct edits.

Sequential code:
for i = 1 to n
 M[i,1] = i;
for j = 1 to m
 M[1,j] = j;
for i = 2 to n
 for j = 2 to m
 if (A[i] == B[j])
 M[i,j] = M[i-1,j-1];
 else
 M[i,j] = 1 + min(M[i-1,j],M[i,j-1]);
Edit Distance: Dynamic Programming

![Dynamic Programming Matrix]

Note: can be filled in any order as long as the cells to the left and above are filled. Can follow path back through matrix to construct edits.

Parallel code:

```plaintext
for i = 1 to n  : M[i,1] = i;
for j = 1 to m  : M[1,j] = j;
for k = 2 to n+m
  istart = max(2,k-m)
  iend = min(k,n)
  parallel for i = istart to iend
    j = k-i+2
    if (A[i] == B[j])
      M[i,j] = M[i-1,j-1];
    else
      M[i,j] = 1 + min(M[i-1,j],M[i,j-1]);
```

Scheduling

So far we have assumed “magic” schedulers that maps dynamic tasks onto processors.

Sidebar: Beyond Nested Parallelism

Assume a way to fork
- Pairwise or multiway
What types of synchronization are allowed
- Fork-join (nested parallelism)
- Futures
- Fully general
The first two can be made deterministic
Can have a large effect on the scheduler and what can be proved about the schedules.
Strict and Fully Strict

- **Fully strict** (fork-join, nested parallel): a task can only synchronize with its parent.
- **Strict**: a task can only synchronize with an ancestor. (X10 recently extended to support strict computations)

Diagram showing fully strict and strict synchronization.

Futures

Futures or read-write synchronization variables can be used for pipelining of various forms, e.g. **producer consumer pipelines**. This cannot be supported in strict or fully strict computations.

If read always occurs “after” the write in sequential order then there is no deadlock.

Diagram showing futures synchronization.

General

- Locks
- Transactions
- Synch variables
- Easy to create deadlock
- Hard to schedule

Diagram showing lock and unlock operations.

Scheduling Outline

Theoretical results on scheduling
Graham, 1966
Greedy Schedules
Specific greedy schedules
- Breadth First
- Work Stealing
- P-DFS
- Hybrid
Graham Scheduling

“Bounds on Certain Multiprocessor Anomalies”, 1966
Model:
Processing Units: \(P_i \), \(1 \leq i \leq n \)
Tasks: \(T = \{T_1, \ldots, T_m\} \)
Partial order: \(<_T \) on \(T \)
Time function: \(\mu : T \rightarrow [0, \infty) \)
\((T, <_T, \mu) \): define a weighted DAG

Graham: List Scheduling

For a task set \(T \), a Task List \(L_T \) is some ordering \([T_{k1}, \ldots, T_{km}] \) of \(T \).
Task is ready when not yet started but all predecessors are finished
List scheduling: when a processor finishes a task it immediately takes the first ready task from \(L \). Ties broken by processor ID.
Showed that for any \(L_T \) and \(L'_T \):
\[
\frac{T(L_T)}{T(L'_T)} \leq 1 + \frac{n - 1}{n}
\]
Some definitions

\(T_p \): time on \(P \) processors
\(W \): work (total weight of the DAG)
\(D \): span (longest path in the DAG)

Lower bound on time: \(T_p \geq \max(W/P, D) \)

Greedy Schedules

As schedule is greedy if a processor cannot sit idle when a task is ready.
List schedules are greedy.
For any greedy schedule:

Efficiency = \(\frac{W}{T_p} \geq \frac{PW}{W + D(P - 1)} \)
Parallel Time = \(T_p < \frac{W}{P} + D \)

Greedy Schedules

Theorem: The time taken by a greedy scheduler is

\(T_p < \frac{W}{P} + D \)

Proof: on board.

Breadth First Schedules

Most naïve schedule. Used by most implementations of P-threads.

Most \(O(n^3) \) tasks

Bad space usage, bad locality
Work Stealing

Local work queues

push new jobs on “new” end
pop jobs from “new” end

If processor runs out of work, then “steal” from another “old” end

Each processor tends to execute a sequential part of the computation.

Work Stealing Theory

For fork-join computations

- # of steals = \(O(PD)\)
- Space = \(O(PS_1)\)
 - \(S_1\) is the sequential space
- # cache misses on private caches = \(Q_1 + O(MPD)\)
 - \(Q_1\) = sequential misses, \(M\) = cache size

Work Stealing Practice

Used in Cilk Scheduler

- Small overheads because common case of pushing/popping from local queue can be made fast (with good data structures and compiler help).
- No contention on a global queue
- Has good distributed cache behavior
- Can indeed require \(O(S_1P)\) memory

Used in many schedulers
Parallel Depth First Schedules (P-DFS)

List scheduling based on Depth-First ordering

2 processor schedule

1
2, 6
3, 4
5, 7
8
9
10

For strict computations a shared stack implements a P-DFS

Premature task” in P-DFS

A running task is premature if there is an earlier sequential task that is not complete

2 processor schedule

1
2, 6
3, 4
5, 7
8
9
10

= premature

P-DFS Theory

For any computation:
 Premature nodes at any time = O(PD)
 Space = \(S + O(PD) \)
 With a shared cache of size \(M + O(PD) \)
 we have \(Q_p = Q_t \)

P-DFS Practice

Experimentally uses less memory than work stealing and performs better on a shared cache.
Requires some “coarsening” to reduce overheads
P-DFS Practice

![Graph showing Memory vs. Processors for different methods.](image)

Hybrid Scheduling

Can mix Work Stealing and P-DFS

![Bar chart showing Priority order with Xs for suspended Qs.](image)

Gives a way to do automatic coarsening while still getting space benefits of PDF

Also allows suspending a whole Q

Other Scheduling

Various other techniques, but not much theory

e.g.

- Locality guided work stealing
- Affinity guided self-scheduling

Many techniques are for particular form of parallelism