15-853: Algorithms in the Real World

Parallelism: Lecture 2
Parallel techniques and algorithms
- Working with collections
- Divide and conquer

Working with Collections

reduce ⊙ [a, b, c, d, ...]
= a ⊙ b ⊙ c ⊙ d + ...

scan ⊙ ident [a, b, c, d, ...]
= [ident, a, a ⊙ b, a ⊙ b ⊙ c, ...

sort compF A

collect [(2,a), (0,b), (2,c), (3,d), (0,e), (2,f)]
= [(0, [b,e]), (2,[a,c,f]), (3,[d])]
Example of scan: parentheses matching

The parentheses matching using a scan:

function parenthesesMatch(S) =
 let
 A = (if c == '(' then 1 else -1: c in S);
 Sums = scan(add, 0, A);
 in
 (reduce(min, Sums) >= 0)

Can also do it with a map and reduce, or with recursion.

Example of Collect: Building an Index

Problem: Given a set of documents each a string, compute an index that maps words to documents.

[(1,"this is the first document"),
(2,"this is the second"),
(3,"the third"),
(4,"and the fourth")]

[($("and",[4]),...,("first",[1]),...,("is",[1,2]),...,$("the",[1,2,3,4]),("this",[1,2]),("third",[3]))]
Technique 2: Divide-And-Conquer

- Merging
- Matrix multiplication
- Matrix inversion
- FFT
- K-d trees

Example: Merging

```
Merge(nil, l2) = l2
Merge(l1, nil) = l1
Merge(h1::t1, h2::t2) = 
  if (h1 < h2) h1::Merge(t1, h2::t2) 
  else h2::Merge(h1::t1, t2)
```

What about in parallel?

The Split Operation

```
fun split (p, empty) = (empty, empty)
| split (p, node(v, L, R)) = 
  if p < v then 
    let val (L1, R1) = split(p, L) 
    in (L1, node(v, R1, R)) end 
  else 
    let val (L1, R1) = split(p, R) 
    in (node(v, L, L1), R1) end;
```

Merging

```
Merge(A, B) = 
  let 
    Node(A_L, m, A_R) = A 
    (B_L, B_R) = split(B, m) 
  in 
    Node(Merge(A_L, B_L), m, Merge(A_R, B_R))
```

\[
\text{Span} = O(\log^2 n) \\
\text{Work} = O(n)
\]
MergeSort

function mergeSort(S) =
if (#S < 2) S
else merge(mergeSort(S[0:#S/2]),
mergeSort(S[#S/2:#S]))

W(n) = 2 W(n/2) + O(n) = O(n log n)

What about the span?

Matrix Multiplication

Fun A*B {
if #A < k then baseCase..
C_{11} = A_{11}*B_{11} + A_{12}*B_{21}
C_{12} = A_{11}*B_{12} + A_{12}*B_{22}
C_{21} = A_{21}*B_{11} + A_{22}*B_{21}
C_{22} = A_{21}*B_{12} + A_{22}*B_{22}
return C
}

W(n) = 8W(n/2) + O(n^2) = O(n^3)
D(n) = D(n/2) + O(1) = O(n log n)

Parallelism = \frac{W}{D} = O\left(\frac{n^3}{\log n}\right)

Matrix Inversion

fun invert(M) {
if small baseCase
D^{-1} = invert(D)
S = A - BD^{-1}C
S^{-1} = invert(S)
E = S^{-1}
F = S^{-1}BD^{-1}
G = -D^{-1}CS^{-1}
H = D^{-1} + D^{-1}CS^{-1}BD^{-1}
M^{-1} = \begin{bmatrix}
E & F \\
G & H
\end{bmatrix}
M = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
}

W(n) = 2W(n/2) + 6W(n/2) + O(n^3)
D(n) = 2D(n/2) + 6D(n/2) + O(n^3)

Parallelism = \frac{W}{D} = O(n^3)

Fourier Transform

function fft(a,w) =
if #a == 1 then a
else
let r = {fft(b, even_elts(w)):
b in [even_elts(a),odd_elts(a)]
in {a + b * w : a in r[0] ++ r[0];
b in r[1] ++ r[1];
w in w};

W(n) = 2W(n/2) + O(n) = O(n log n)
D(n) = D(n/2) + O(1) = O(n log n)

Parallelism = \frac{W}{D} = O(n)
Spatial Decompositions: Revisited

Typically consist of:
- Split the data points into some constant number of parts. This is similar to the selection in Quicksort.
- Recursively subdivide within each part.

Both of these are easy to parallelize, but problematic if highly imbalanced.

Callahan-Kosaraju: Build Tree

Function Tree(P)
if |P| = 1 then return leaf(P)
else
 \(d_{\text{max}} = \text{dimension of } l_{\text{max}} \)
 \(P_1, P_2 = \text{split } P \text{ along } d_{\text{max}} \text{ at midpoint} \)
Return Node(Tree(P_1), Tree(P_2), \(l_{\text{max}} \))

KK: Generating the Realization

function \(\text{wsr}(T) \)
if leaf(T) return \(\emptyset \)
else return \(\text{wsr} \text{left}(T) \cup \text{wsr.right}(T) \)

function \(\text{wsrP}(T_1, T_2) \)
if wellSep(T_1, T_2) return \(\{(T_1, T_2)\} \)
else if \(l_{\text{max}}(T_1) > l_{\text{max}}(T_2) \) then
 return \(\text{wsrP} \text{left}(T_1), T_2 \cup \text{wsrP.right}(T_1), T_2 \)
else
 return \(\text{wsrP}(T_1, \text{left}(T_2)) \cup \text{wsrP}(T_1, \text{right}(T_2)) \)

Bounding Volume Hierarchy: Top Down

Find bounding box of objects
Split objects into two groups
Recurse

From: Durand and Cutler, MIT
Bounding Volume Hierarchy
- Find bounding box of objects
- Split objects into two groups
- Recurse

Parallel Techniques

Some common themes in “Thinking Parallel”
1. Working with collections.
 - map, selection, reduce, scan, collect
2. Divide-and-conquer
 - Even more important than sequentially
 - Merging, matrix multiply, FFT, ...
3. Contraction
 - Solve single smaller problem
 - List ranking, graph contraction
4. Randomization
 - Symmetry breaking and random sampling