

Example of TLS (previously SSL)	
TLS (Transport Layer Security) is the standard for the web (https), and voice over IP. Protocol (somewhat <u>simplified</u>): Bob -> amazon.com B->A: <u>client hello</u> : protocol version, acceptable ciphers A->B: <u>server hello</u> : cipher, session ID, amazon.com _{verisign} B->A: <u>key exchange</u> , {masterkey} _{amazon's public key} A->B: <u>server finish</u> : ([amazon,prev-messages,masterkey]) _{key2}	nd- ake
A->B: <u>server message</u> : (message1,[message1]) _{key1} da	ta
<pre> h _{issuer} = Certificate = Issuer, <h,h's key,="" public="" stamp="" time="">_{issuer's private key} <>private key = Digital signature {}public key = Public-key encryption [] = Secure Hash ()_{key} = Private-key encryption key1 and key2 are derived from masterkey and session ID</h,h's></pre>	
15-853 Page 5	

Public Key History

Some algorithms

- Diffie-Hellman, 1976, key-exchange based on discrete logs
- Merkle-Hellman, 1978, based on "knapsack problem"
- McEliece, 1978, based on algebraic coding theory
- RSA, 1978, based on factoring
- Rabin, 1979, security can be reduced to factoring
- ElGamal, 1985, based on discrete logs
- Blum-Goldwasser, 1985, based on quadratic residues
- Elliptic curves, 1985, discrete logs over Elliptic curves
- Chor-Rivest, 1988, based on knapsack problem
- NTRU, 1996, based on Lattices
- XTR, 2000, based on discrete logs of a particular field

15-853

RSA

Name after Rivest, Shamir and Adleman (1978) but apparently invented by Clifford Cocks in 1973.

Based on difficulty of factoring.

Used to **hide** the size of a group Z_n^* since:

$|\mathbf{Z}_{n}^{*}| = \phi(n) = n \prod (1 - 1/p)$

- Factoring has not been reduced to RSA
 - an algorithm that generates m from c does not give an efficient algorithm for factoring

On the other hand, factoring has been reduced to finding

- there is an efficient algorithm for factoring given one that can find the private key from the public key.

Security of RSA

Warning:

- Do not use this or any other algorithm naively!

Possible security holes:

- Need to use "safe" primes p and q. In particular p-1 and q-1 should have large prime factors.
- p and q should not have the same number of digits.
 Can use a middle attack starting at sqrt(n).

15-853

- e cannot be too small
- Don't use same n for different e's.
- You should always "pad"

RSA Performance

Performance: (600Mhz PIII) (from: <u>ssh toolkit</u>):

Algorithm	Bits/key		Mbits/sec
RSA Keygen	1024	.35sec/key	
	2048	2.83sec/key	
RSA Encrypt	1024	1786/sec	3.5
	2048	672/sec	1.2
RSA Decrypt	1024	74/sec	.074
	2048	12/sec	.024
ElGamal Enc.	1024	31/sec	.031
ElGamal Dec.	1024	61/sec	.061
DES-cbc	56		95
twofish-cbc	128		140
Rijndael	128		180

RSA in the "Real World"

Part of many standards: PKCS, ITU X.509, ANSI X9.31, IEEE P1363 Used by: SSL, PEM, PGP, Entrust, ...

The standards specify many details on the implementation, e.g.

- e should be selected to be small, but not too small
- "multi prime" versions make use of n = pqr... this makes it cheaper to decode especially in parallel (uses Chinese remainder theorem).

15-853

Page 23

Factoring in the Real World

Quadratic Sieve (QS):

 $T(n) = e^{(1+o(n))(\ln n)^{1/2} (\ln(\ln n))^{1/2}}$

- Used in 1994 to factor a 129 digit (428-bit) number. 1600 Machines, 8 months.

Number field Sieve (NFS):

 $T(n) = e^{(1.923 + o(1))(\ln n)^{1/3} (\ln(\ln n))^{2/3}}$

15-853

- Used in 1999 to factor 155 digit (512-bit) number.
 35 CPU years. At least 4x faster than QS
- Used in 2003-2005 to factor 200 digits (663 bits) 75 CPU years (\$20K prize)

