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15-853:Algorithms in the Real World 

Cryptography 3 and 4 
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Cryptography Outline 
Introduction: terminology, cryptanalysis, security  
Primitives: one-way functions, trapdoors, … 
Protocols: digital signatures, key exchange, .. 
Number Theory:  groups, fields, … 
Private-Key Algorithms: Rijndael, DES 
Public-Key Algorithms:  

–  Diffie-Hellman Key Exchange 
–  El-Gamal, RSA, Blum-Goldwasser 
–  Quantum Cryptography 

Case Studies: Kerberos, Digital Cash 
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Public Key Cryptosystems 
Introduced by Diffie and Hellman in 1976. 

Encryption 

Decryption 

K1 

K2 

Cyphertext 

Ek(M) = C 

Dk(C) = M 

Original Plaintext 

Plaintext Public Key systems 
K1 = public key 
K2 = private key 

Digital signatures 
K1 = private key 
K2 = public key 

Typically used as part of a more complicated protocol. 
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One-way trapdoor functions 
Both Public-Key and Digital signatures make use of 

one-way trapdoor functions. 
Public Key:  

–  Encode:  c = f(m) 
–  Decode: m = f-1(c) using trapdoor 

Digital Signatures: 
–  Sign: c = f-1(m) using trapdoor 
–  Verify: m = f(c) 
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Example of TLS (previously SSL) 
TLS (Transport Layer Security) is the standard for the web 

(https), and voice over IP. 
Protocol (somewhat simplified): Bob -> amazon.com 
    B->A:  client hello: protocol version, acceptable ciphers 
    A->B:  server hello: cipher, session ID, |amazon.com|verisign 
    B->A:  key exchange, {masterkey}amazon’s public key 

      A->B:  server finish: ([amazon,prev-messages,masterkey])key1 

      B->A:  client finish: ([bob,prev-messages,masterkey])key2 
    A->B:  server message: (message1,[message1])key1 
    B->A:  client message: (message2,[message2])key2 
 |h|issuer         = Certificate 
                  = Issuer, <h,h’s public key, time stamp>issuer’s private key 

   <…>private key = Digital signature    {…}public key = Public-key encryption 
 [..]             = Secure Hash           (…)key       = Private-key encryption 
key1 and key2 are derived from masterkey and session ID 

hand- 
shake 

data 
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Public Key History 
Some algorithms 

–  Diffie-Hellman, 1976, key-exchange based on discrete logs 
–  Merkle-Hellman, 1978,  based on “knapsack problem” 
–  McEliece, 1978, based on algebraic coding theory 
–  RSA, 1978, based on factoring 
–  Rabin, 1979, security can be reduced to factoring 
–  ElGamal, 1985, based on discrete logs 
–  Blum-Goldwasser, 1985, based on quadratic residues 
–  Elliptic curves, 1985, discrete logs over Elliptic curves 
–  Chor-Rivest, 1988, based on knapsack problem 
–  NTRU, 1996, based on Lattices 
–  XTR, 2000, based on discrete logs of a particular field 
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Diffie-Hellman Key Exchange 
A group (G,*) and a primitive element (generator) g is 

made public. 
–  Alice picks  a, and sends ga to Bob 
–  Bob picks b and sends gb to Alice 
–  The shared key is gab 

Note the shared key is easy for Alice or Bob to 
compute, but assuming discrete logs are hard is 
hard for anyone else to compute. 

Can someone see a problem with this protocol? 
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Person-in-the-middle attack 

Alice Bob Mallory 

ga 

gb gd 

gc 

Key1 = gad Key1 = gcb 

Mallory gets to listen to everything. 
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ElGamal 
Based on the difficulty of the discrete log problem. 
Invented in 1985 
Digital signature and Key-exchange variants 

–    Digital signature is AES standard 
–    Public Key used by TRW (avoided RSA patent) 

Works over various groups 
–  Zp,  
–  Multiplicative group GF(pn),  
–  Elliptic Curves 
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ElGamal Public-key Cryptosystem 

(G,*) is a group 
•  α a generator for G 
•  a ∈ Z|G| 
•  β = αa 

G is selected so that it 
is hard to solve the 
discrete log problem. 

Public Key: (α, β) and 
some description of G 

Private Key: a 

Encode: 
Pick random k ∈ Z|G| 
E(m) = (y1, y2) 

    = (α k, m * βk) 

Decode: 
D(y) = y2 * (y1

a)-1 

    = (m * βk) * (αka)-1 
    = m * βk * (βk)-1 

    = m 
You need to know a to 

easily decode y! 
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ElGamal: Example 

G = Z11
* 

•  α = 2 
•  a  = 8 
•  β = 28 (mod 11) = 3 

Public Key: (2, 3), Z11
* 

Private Key: a = 8 

Encode: 7 
Pick random k = 4 
E(m) = (24, 7 * 34) 

    = (5, 6) 

Decode: (5, 6) 
D(y) = 6 * (58)-1 

    = 6 * 4-1 
    = 6 * 3 (mod 11) 
    = 7 
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Merkle-Hellman 
Gets “security” from the Subet Sum (also called 

knapsack) which is NP-hard to solve in general. 
Subset Sum (Knapsack): Given a sequence W = {w0,w1, 

…,wn-1}, wi ∈ Z of weights and a sum S, calculate a 
boolean vector B, such that:  

Even deciding if there is a solution is NP-hard.   
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Merkle-Hellman 

W is superincreasing if: 

It is easy to solve the subset-sum problem for 
superincreasing W in O(n) time. 

Main idea of Merkle-Hellman: 
–  Hide the easy case by multiplying each wi by a 

constant a modulo a prime p 

–  Knowing a and p allows you to retrieve the 
superincreasing sequence 
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Merkle-Hellman 

What we need 
•  w1, , wn 

superincreasing 
integers 

•  p > ∑i=1
n wi  and prime 

•  a,   1 ≤ a ≤ n 

•  w’i = a wi mod p 

Public Key: w’i 
Private Key: wi, p, a,  

Encode: 
y = E(m) = ∑i=1

n mi w’i 

Decode: 
z = a-1 y mod p  
   = a-1 ∑i=1

n mi w’i mod p 
   = a-1 ∑i=1

n miaiwi mod p 
   = ∑i=1

n mi wi  
Solve subset sum prob: 
  (w1, , wn, z) 
obtaining m1,  mn 
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Merkle Hellman: Problem 
Was broken by Shamir in 1984. 
Shamir showed how to use integer programming to 

solve the particular class of Subset Sum problems 
in polynomial time. 

Lesson: don’t leave your trapdoor loose. 
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RSA 
Name after Rivest, Shamir and Adleman (1978) but 

apparently invented by Clifford Cocks in 1973. 
Based on difficulty of factoring. 
Used to hide the size of a group Zn

* since:  
. 
Factoring has not been reduced to RSA 

–  an algorithm that generates m from c does not give 
an efficient algorithm for factoring 

On the other hand, factoring has been reduced to finding 
the private-key. 
–  there is an efficient algorithm for factoring given 

one that can find the private key from the public key. 
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RSA Public-key Cryptosystem 

What we need: 
•  p and q, primes of 

approximately the 
same size 

•  n = pq 
 φ(n) = (p-1)(q-1) 

•  e ∈ Z φ(n)
* 

•  d = e-1 mod φ(n) 

Public Key: (e,n) 
Private Key: d 

Encode: 
m ∈ Zn 
E(m) = me mod n 

Decode: 
D(c) = cd mod n 
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RSA continued 
Why it works: 
D(c) = cd mod n 
       = med mod n 
       = m1 + k(p-1)(q-1) mod n 
       = m1 + k φ(n) mod n 
       = m(m φ(n))k mod n 
       = m 
Why is this argument not quite sound? 
What if m ∉ Zn

* then mφ(n) ≠ 1 mod n 
    Answer 1: Not hard to show that it still works. 
  Answer 2: jackpot – you’ve factored n 
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RSA computations 
To generate the keys, we need to  

–  Find two primes p and q.  Generate candidates 
and use primality testing to filter them. 

–  Find e-1 mod (p-1)(q-1).   Use Euclid’s 
algorithm.  Takes time log2(n) 

To encode and decode 
–  Take me or cd.  Use the power method. 

Takes time log(e) log2(n) and log(d) log2(n) . 
In practice e is selected to be small so that encoding 

is fast. 
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Security of RSA 
Warning: 

–  Do not use this or any other algorithm naively! 
Possible security holes: 

–  Need to use “safe” primes p and q.  In particular 
p-1 and q-1 should have large prime factors.  

–  p and q should not have the same number of digits.   
Can use a middle attack starting at sqrt(n). 

–  e cannot be too small 
–  Don’t use same n for different e’s. 
–  You should always “pad” 
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Algorithm to factor given d and e 
If an attacker has an algorithm that generates d 

from e, then he/she can factor n in PPT.  Variant 
of the Rabin-Miller primality test. 

Function TryFactor(e,d,n) 
1.  write ed – 1 as 2sr, r odd 
2.  choose w at random < n 
3.  v = wr mod n 
4.  if v = 1 then return(fail) 
5.  while v ≠ 1 mod n 
6.     v0  = v 
7.     v = v2 mod n 
8.  if v0 = n - 1 then return(fail) 
9.  return(pass, gcd(v0 + 1, n)) 

LasVegas algorithm 
Probability of pass 
is > .5. 
Will return p or q 
if it passes. 
Try until you pass. 
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RSA Performance 
Performance: (600Mhz PIII) (from: ssh toolkit):                                 

Algorithm Bits/key Mbits/sec 

RSA Keygen 
1024 .35sec/key 
2048 2.83sec/key 

RSA Encrypt 
1024 1786/sec 3.5 
2048 672/sec 1.2 

RSA Decrypt 
1024 74/sec .074 
2048 12/sec .024 

ElGamal Enc.  1024 31/sec .031 
ElGamal Dec. 1024 61/sec .061 
DES-cbc 56 95 
twofish-cbc 128 140 
Rijndael 128 180 
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RSA in the “Real World” 
Part of many standards: PKCS, ITU X.509,  

ANSI X9.31, IEEE P1363 
Used by: SSL, PEM, PGP, Entrust, … 

The standards specify many details on the 
implementation, e.g. 
–  e should be selected to be small, but not too 

small 
–   “multi prime” versions make use of n = pqr… 

this makes it cheaper to decode especially in 
parallel (uses Chinese remainder theorem). 
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Factoring in the Real World 
Quadratic Sieve (QS): 

–  Used in 1994 to factor a 129 digit (428-bit) 
number.  1600 Machines, 8 months. 

Number field Sieve (NFS): 

–  Used in 1999 to factor 155 digit (512-bit) number.  
35 CPU years.  At least 4x faster than QS 

–  Used in 2003-2005 to factor 200 digits (663 bits) 
75 CPU years ($20K prize) 



7	


15-853 Page 25 

Probabilistic Encryption 
For RSA one message goes to one cipher word.  This 

means we might gain information by running Epublic
(M). 

Probabilistic encryption maps every M to many C 
randomly.   Cryptanalysists can’t tell whether  
C = Epublic(M). 

ElGamal is an example (based on the random k), but it 
doubles the size of message. 
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BBS “secure” random bits 
BBS (Blum, Blum and Shub, 1984) 

–  Based on difficulty of factoring, or finding 
square roots modulo n = pq. 

Fixed 
•  p and q are primes such 

that p = q = 3 (mod 4) 
•  n = pq (is called a Blum 

integer) 

For a particular bit seq. 
•  Seed: random x 

relatively prime to n. 
•  Initial state: x0 = x2 
•  ith state: xi = (xi-1)2 

•  ith bit: lsb of xi
 

Note that: 
Therefore knowing p and q allows us to find x0 from xi 
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Blum-Goldwasser: A stream cypher 
Public key: n (= pq)        Private key: p or q 

Decrypt: 
Using p and q, find  
Use this to regenerate the bi and hence mi 

xi 

xor mi (0 ≤ i < l) ci (0 ≤ i < l) 
bi 

Random x x2 mod n BBS 
lsb 

ci (l ≤ i < l + log n) = xl 

Encrypt: 
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Quantum Cryptography 
In quantum mechanics, there is no way to take a 

measurement without potentially changing the 
state.  E.g. 
–  Measuring position, spreads out the momentum 
–  Measuring spin horizontally, “spreads out” the 

spin probability vertically 
Related to Heisenberg’s uncertainty principal  
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Using photon polarization 

= ?  (equal probability) or 

= or ? (equal probability) 

measure 
diagonal 

measure 
square 

destroys state 
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Quantum Key Exchange 
1.  Alice sends bob photon stream randomly polarized 

in one of 4 polarizations: 

2.  Bob measures photons in random orientations 
e.g.: x + + x x x + x (orientations used) 
         \  |  -    \  /  /   -   \  (measured polarizations) 
and tells Alice in the open what orientations he 
used, but not what he measured. 

3.  Alice tells Bob in the open which are correct 
4.  Bob and Alice keep the correct values 
Susceptible to a man-in-the-middle attack 
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In the “real world” 
Not yet used in practice, but experiments have 

verified that it works. 
IBM has working system over 30cm at 10bits/sec. 
More recently, up to 10km of fiber.  
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Cryptography Outline 
Introduction: terminology, cryptanalysis, security  
Primitives: one-way functions, trapdoors, … 
Protocols: digital signatures, key exchange, .. 
Number Theory:  groups, fields, … 
Private-Key Algorithms: Rijndael, DES 
Public-Key Algorithms: Knapsack, RSA, El-Gamal, …  
Case Studies:  

–  Kerberos 
–  Digital Cash (not this year) 
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Kerberos 
A key-serving system based on Private-Keys (DES). 
Assumptions 
•  Built on top of TCP/IP networks 
•  Many “clients” (typically users, but perhaps 

software) 
•  Many “servers” (e.g. file servers, compute servers, 

print servers, …) 
•  User machines and servers are potentially insecure 

without compromising the whole system 
•  A kerberos server must be secure. 
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Kerberos 

Kerberos 

Client Server 

Ticket Granting Service 
(TGS) 

1 2 3 
4 

5 

1.  Request ticket-granting-ticket (TGT) 
2.  <TGT> 
3.  Request server-ticket (ST) 
4.  <ST> 
5.  Request service 

15-853 Page 35 

C = client   S = server  K = key   
T = timestamp   V = time range 
TGS = Ticket Granting Service  A = Net Address 

Ticket Granting Ticket: TC,TGS = TGS,{C,A,V,KC,TGS}KTGS 
Server Ticket:               TC,S      =   S,  {C,A,V,KC,S     }KS 
Authenticator:               AC,S    = {C,T,[K]}KC,S 

1.  Client to Kerberos: {C,TGS}KC 
2.  Kerberos to Client: {KC,TGS}KC, TC,TGS  
3.  Client to TGS:        AC,TGS, TC,TGS 
4.  TGS to Client:        {KC,S}KC,TGS, TC,S 
5.  Client to Server:    AC,S, TC,S 

Kerberos V Message Formats 

Possibly 
repeat 
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Kerberos Notes 
All machines have to have synchronized clocks 

–  Must not be able to reuse authenticators 
Servers should store all previous and valid tickets 

–  Help prevent replays 
Client keys are typically a one-way hash of the 

password.  Clients do not keep these keys. 
Kerberos 5 uses CBC mode for encryption Kerberos 4 

was insecure because it used a nonstandard mode. 


