15-853: Algorithms in the Real World

Locality II: Cache-oblivious algorithms
 - Matrix multiplication
 - Distribution sort
 - Static searching

I/O Model

Abstracts a single level of the memory hierarchy
- Fast memory (cache) of size M
- Accessing fast memory is free, but moving data from slow memory is expensive
- Memory is grouped into size-B blocks of contiguous data

- Cost: the number of block transfers (or I/Os) from slow memory to fast memory.

Cache-Oblivious Algorithms

- Algorithms not parameterized by B or M.
 - These algorithms are unaware of the parameters of the memory hierarchy
- Analyze in the ideal cache model — same as the I/O model except optimal replacement is assumed

- Optimal replacement means proofs may posit an arbitrary replacement policy, even defining an algorithm for selecting which blocks to load/evict.

Advantages of Cache-Oblivious Algorithms

- Since CO algorithms do not depend on memory parameters, bounds generalize to multilevel hierarchies.
- Algorithms are platform independent
- Algorithms should be effective even when B and M are not static
Matrix Multiplication

Consider standard iterative matrix-multiplication algorithm

\[
Z := X \cdot Y
\]

• Where X, Y, and Z are \(N \times N\) matrices

\[
\text{for } i = 1 \text{ to } N \text{ do for } j = 1 \text{ to } N \text{ do for } k = 1 \text{ to } N \text{ do} \\
Z[i][j] := X[i][k] \cdot Y[k][j]
\]

• \(\Theta(N^3)\) computation in RAM model. What about I/O?

How Are Matrices Stored?

How data is arranged in memory affects I/O performance

• Suppose X, Y, and Z are in row-major order

\[
Z := X \cdot Y
\]

\[
\text{for } i = 1 \text{ to } N \text{ do for } j = 1 \text{ to } N \text{ do for } k = 1 \text{ to } N \text{ do} \\
Z[i][j] := X[i][k] \cdot Y[k][j]
\]

• If \(N \geq B\), reading a column of Y is expensive ⇒ \(\Theta(N)\) I/Os

• If \(N \geq M\), no locality across iterations for X and Y ⇒ \(\Theta(N^3)\) I/Os

We can do much better than \(\Theta(N^3/B)\) I/Os, even if all matrices are row-major.

Recursive Matrix Multiplication

Compute 8 submatrix products recursively

\[
Z_{11} := X_{11}Y_{11} + X_{12}Y_{21} \\
Z_{12} := X_{11}Y_{12} + X_{12}Y_{22} \\
Z_{21} := X_{21}Y_{11} + X_{22}Y_{21} \\
Z_{22} := X_{21}Y_{12} + X_{22}Y_{22}
\]

Summing two matrices with row-major layout is cheap — just scan the matrices in memory order.

• Cost is \(\Theta(N^2/B)\) I/Os to sum two \(N \times N\) matrices, assuming \(N \geq B\).
Recursive Multiplication Analysis

\[\text{Recursive algorithm:} \]

\[
\begin{align*}
Z_{11} & := X_{11}Y_{11} + X_{12}Y_{21} \\
Z_{12} & := X_{11}Y_{12} + X_{12}Y_{22} \\
Z_{21} & := X_{21}Y_{11} + X_{22}Y_{21} \\
Z_{22} & := X_{21}Y_{12} + X_{22}Y_{22}
\end{align*}
\]

\[\text{Mult}(n) = 8\text{Mult}(n/2) + O(n^2/B) \]
\[\text{Mult}(n_0) = O(M/B) \text{ when } n_0 \text{ for } X, Y \text{ and } Z \text{ fit in memory} \]

The big question is the base case \(n_0 \)

Array storage

- How many blocks does a size-\(N \) array occupy?
- If it’s aligned on a block (usually true for cache-aware), it takes exactly \(\lceil N/B \rceil \) blocks
- If you’re unlucky, it’s \(\lceil N/B \rceil + 1 \) blocks. This is generally what you need to assume for cache-oblivious algorithms as you can’t force alignment
- In either case, it’s \(O(1+N/B) \) blocks

Row-major matrix

- If you look at the full matrix, it’s just a single array, so rows appear one after the other
- The matrix
- So entire matrix fits in \(\lceil N^2/B \rceil + 1 = \Theta(1+N^2/B) \) blocks

Row-major submatrix

- In a submatrix, rows are not adjacent in slow memory
- Need to treat this as \(k \) arrays, so total number of blocks to store submatrix is \(k \lceil k/B \rceil + 1 = \Theta(k^2/B) \)
Row-major submatrix

• Recall we had the recurrence
 \[\text{Mult}(N) = 8 \text{Mult}(N/2) + \Theta(N^2/B) \]
 (1)

• The question is when does the base case occur here? Specifically, does a \(\Theta(\sqrt{M}) \times \Theta(\sqrt{M}) \) matrix fit in cache, i.e., does it occupy at most \(M/B \) different blocks?

• If a \(\Theta(\sqrt{M}) \times \Theta(\sqrt{M}) \) fits in cache, we stop the analysis at a \(\Theta(\sqrt{M}) \) size — lower levels are free.

 i.e., \[\text{Mult}(\Theta(\sqrt{M})) = \Theta(M/B) \]
 (2)

• Solving (1) with (2) as a base case gives
 \[\text{Mult}(N) = \Theta(N^2/B + N^3/B\sqrt{M}) \]

Fixing the base case

Two fixes:
1. The "tall cache" assumption: \(M \geq B^2 \).

 Then the base case is correct, completing the analysis.
2. Change the matrix layout.

Is that assumption correct?

Does a \(\Theta(\sqrt{M}) \times \Theta(\sqrt{M}) \) matrix occupy at most \(\Theta(M/B) \) different blocks?

• We have a formula from before. A \(k \times k \) submatrix requires \(\Theta(k + k^2/B) \) blocks,

 so a \(\Theta(\sqrt{M}) \times \Theta(\sqrt{M}) \) submatrix occupies roughly \(\sqrt{M} + M/B \) blocks

• The answer is “yes” only if \(\Theta(\sqrt{M} + M/B) = \Theta(M/B) \).
 iff \(\sqrt{M} \leq M/B \), or \(M \geq B^2 \).

• If "no," analysis (base case) is broken — recursing into the submatrix will still require more I/Os.

Without Tall-Cache Assumption

Try a better matrix layout

• The algorithm is recursive. Use a layout that matches the recursive nature of the algorithm

 • For example, Z-morton ordering:

 - The line connects elements that are adjacent in memory
 - In other words, construct the layout by storing each quadrant of the matrix contiguously, and recurse
Recursive MatMul with Z-Morton

The analysis becomes easier
- Each quadrant of the matrix is contiguous in memory, so a \(c/M \times c/M \) submatrix fits in memory
 - The tall-cache assumption is not required to make this base case work
- The rest of the analysis is the same

Searching: binary search is bad

- Search hits a different block until reducing keyspace to size \(\Theta(B) \).
- Thus, total cost is \(\log_2 N - \Theta(\log_2 B) = \Theta(\log_2(N/B)) \approx \Theta(\log_2 N) \) for \(N \gg B \)

Static cache-oblivious searching

Goal: organize \(N \) keys in memory to facilitate efficient searching. (van Emde Boas layout)
1. Build a balanced binary tree on the keys
2. Layout the tree recursively in memory, splitting the tree at half the height

Static layout example

Example: binary search for element A with block size \(B = 2 \)
- Thus, total cost is \(\log_2 N - \Theta(\log_2 B) = \Theta(\log_2(N/B)) \approx \Theta(\log_2 N) \) for \(N \gg B \)
Cache-oblivious searching: Analysis I

- Consider recursive subtrees of size \sqrt{B} to B on a root-to-leaf search path.
- Each subtree is contiguous and fits in $O(1)$ blocks.
- Each subtree has height $O(\lg B)$, so there are $O(\log_B N)$ of them.

Cache-oblivious searching: Analysis II

- Consider recursive subtrees of size \sqrt{B} to B on a root-to-leaf search path.
- Each subtree is contiguous and fits in $O(1)$ blocks.
- Each subtree has height $O(\lg B)$, so there are $O(\log_B N)$ of them.

Analyze using a recurrence

- $S(N) = 2S(\sqrt{N})$ or $S(N) = 2S(\sqrt{N}) + O(1)$
- base case $S(\sqrt{B}) = 1$ or base case $S(\sqrt{B}) = 0.$

Solves to $O(\log_B N)$
Distribution sort outline

Analogous to multiway quicksort

1. Split input array into \sqrt{N} contiguous subarrays of size \sqrt{N}. Sort subarrays recursively

2. Choose \sqrt{N} “good” pivots $p_1 \leq p_2 \leq \ldots \leq p_{\sqrt{N}-1}$.

3. Distribute subarrays into buckets, according to pivots

4. Recursively sort the buckets

5. Copy concatenated buckets back to input array

Distribution sort analysis sketch

- Step 1 (implicitly) divides array and sorts \sqrt{N} size-\sqrt{N} subproblems
- Step 4 sorts \sqrt{N} buckets of size $\sqrt{N} \leq n_i \leq 2\sqrt{N}$, with total size N
- Step 5 copies back the output, with a scan

Gives recurrence:

$$T(N) = \sqrt{N} T(\sqrt{N}) + \sum T(n_i) + \Theta(N/B) + \text{Step 2\&3} \approx 2\sqrt{N} T(\sqrt{N}) + \Theta(N/B)$$

Base: $T(\sqrt{B}) = 1$

$$= \Theta((N/B) \log_{W/B} (N/B))$$ if $M \geq B^2$
Missing steps

2. Choose \(JN \) "good" pivots \(p_1 \leq p_2 \leq \ldots \leq p_{\sqrt{N}} \).
 (2) Not too hard in \(\Theta(N/B) \)

3. Distribute subarrays into buckets, according to pivots

\[
\begin{array}{c}
\text{Bucket 1} \\
\leq p_1 \leq \\
\text{Bucket 2} \\
\leq p_2 \leq \ldots \leq p_{\sqrt{N}} \leq \\
\text{Bucket } \sqrt{N} \\
\end{array}
\]

\(\sqrt{N} \leq \text{size} \leq \sqrt{2N} \)

Naïve distribution

- Distribute first subarray, then second, then third, …
- Cost is only \(\Theta(N/B) \) to scan input array
- What about writing to the output buckets?
 - Suppose each subarray writes 1 element to each bucket. Cost is 1 I/O per write, for \(N \) total!

Better recursive distribution

Given subarrays \(s_1, \ldots, s_k \) and buckets \(b_1, \ldots, b_k \)
1. Recursively distribute \(s_1, \ldots, s_{k/2} \) to \(b_1, \ldots, b_{k/2} \)
2. Recursively distribute \(s_{k/2}, \ldots, s_k \) to \(b_{k/2}, \ldots, b_k \)
3. Recursively distribute \(s_{k/2}, \ldots, s_k \) to \(b_{k/2}, \ldots, b_k \)
4. Recursively distribute \(s_{k/2}, \ldots, s_k \) to \(b_{k/2}, \ldots, b_k \)

Despite crazy order, each subarray operates left to right. So only need to check next pivot.

Distribute analysis

Counting only "random accesses" here
- \(D(k) = 4D(k/2) + O(k) \)

Base case: when the next block in each of the \(k \) buckets/subarrays fits in memory
 (this is like an \(M/B \)-way merge)
- So we have \(D(M/B) = D(B) = \text{free} \)

Solves to \(D(k) = O(k^2/B) \)
\(\Rightarrow \) distribute uses \(O(N/B) \) random accesses — the rest is scanning at a cost of \(O(1/B) \) per element
Note on distribute

If you unroll the recursion, it's going in Z-morton order on this matrix:

\begin{itemize}
 \item i.e., first distribute \(s_1 \) to \(b_1 \), then \(s_1 \) to \(b_2 \), then \(s_2 \) to \(b_1 \), then \(s_2 \) to \(b_2 \), and so on.
\end{itemize}