15-853: Algorithms in the Real World

Locality I: Cache-aware algorithms
- Introduction
- Sorting
- List ranking
- B-trees
- Buffer trees

RAM Model
Standard theoretical model for analyzing algorithms:
- Infinite memory size
- Uniform access cost
- Evaluate an algorithm by the number of instructions executed

I/O Model
Abstracts a single level of the memory hierarchy
- Fast memory (cache) of size \(M \)
- Accessing fast memory is free, but moving data from slow memory is expensive
- Memory is grouped into size-\(B \) blocks of contiguous data

- Cost: the number of block transfers (or I/Os) from slow memory to fast memory.
Notation Clarification

- \(M \): the number of objects that fit in memory, and
- \(B \): the number of objects that fit in a block
- So for word-size (8 byte) objects, and memory size 1Mbyte, \(M = 128,000 \)

Why a 2-Level Hierarchy?

- It's simpler than considering the multilevel hierarchy
- A single level may dominate the runtime of the application, so designing an algorithm for that level may be sufficient
- Considering a single level exposes the algorithmic difficulties — generalizing to a multilevel is often straightforward
- We'll see cache-oblivious algorithms later as a way of designing for multi-level hierarchies

What Improvement Do We Get?

Examples
- Adding all the elements in a size-\(N \) array (scanning)
- Sorting a size-\(N \) array
- Searching a size-\(N \) data set in a good data structure

<table>
<thead>
<tr>
<th>Problem</th>
<th>RAM Algorithm</th>
<th>I/O Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning</td>
<td>(\Theta(N))</td>
<td>(\Theta(N/B))</td>
</tr>
<tr>
<td>Sorting</td>
<td>(\Theta(N \log_2 N))</td>
<td>(\Theta(((N/B) \log_{M/B}(N/B)))</td>
</tr>
<tr>
<td>Searching</td>
<td>(\Theta(\log_2 N))</td>
<td>(\Theta(\log_3 N))</td>
</tr>
<tr>
<td>Permuting</td>
<td>(\Theta(N))</td>
<td>(\Theta(\min(N,\text{sort}(N)))</td>
</tr>
</tbody>
</table>

- For 8-byte words on example new Intel Processor
 - \(B \approx 8 \) in L2-cache, \(B \approx 1000 \) on disc
 - \(\log_2 B \approx 3 \) in L2-cache, \(\log_2 B \approx 10 \) on disc

Sorting

Standard MergeSort algorithm:
- Split the array in half
- MergeSort each subarray
- Merge the sorted subarrays
- Number of computations is \(\Theta(N \log N) \) on an \(N \)-element array

How does the standard algorithm behave in the I/O model?
Merging

- A size-N array occupies at most $\lceil N/B \rceil + 1$ blocks
- Each block is loaded once during merge, assuming memory size $M \geq 3B$

MergeSort Analysis

- Sorting in memory is free, so the base case is $S(M) = \Theta(M/B)$ to load a size-M array
- $S(N) = 2S(N/2) + \Theta(N/B)$
 $\Rightarrow S(N) = \Theta((N/B)(\log_2(N/M)+1))$

I/O Efficient MergeSort

- Instead of doing a 2-way merge, do a $\Theta(M/B)$-way merge
 IOMergeSort:
 - Split the array into $\Theta(M/B)$ subarrays
 - IOMergeSort each subarray
 - Perform a $\Theta(M/B)$-way merge to combine the subarrays

k-Way Merge

- Assuming $M/B \geq k+1$, one block from each array fits in memory
- Therefore, only load each block once
- Total cost is thus $\Theta(N/B)$
IOMergeSort Analysis

- Sorting in memory is free, so the base case is $S(M) = \Theta(M/B)$ to load a size-M array
- $S(N) = (M/B) \cdot S(NB/M) + \Theta(N/B)$

 \[\Rightarrow S(N) = \Theta((N/B)(\log_{M/B}(N/M) + 1)) \]

MergeSort Comparison

- Traditional MergeSort costs $\Theta((N/B)\log_2(N/M))$ I/Os on size-N array
- IOMergeSort is I/O efficient, costing only $\Theta((N/B)\log_{M/B}(N/M))$
- The new algorithm saves $\Theta(\log_2(M/B))$ fraction of I/Os.

How significant is this savings?
- Consider L3 cache to main memory on Nehalem
 - $M = 1$ Million, $B = 8$, $N = 1$ Billion
 - 1 billion / 8 \times 10 vs.
 - 1 billion / 8 \times 1
- Not hard to calculate exact constants

List Ranking

- Given a linked list, calculate the rank of (number of elements before) each element

 - Trivial algorithm is $\mathcal{O}(N)$ computation steps

List ranking in I/O model

- Assume list is stored in ~N/B blocks!
- May jump in memory a lot.
- Example: $M/B = 3$, $B = 2$, least-recently-used eviction

 - In general, each pointer can result in a new block transfer, for $\mathcal{O}(N)$ I/Os
Why list ranking?

- Recovers locality in the list (can sort based on the ranking)

Generalizes to trees via Euler tours
- Useful for various forest/tree algorithms like least common ancestors and tree contraction
- Also used in graph algorithms like minimum spanning tree and connected components

List ranking outline

1. Produce an independent set of $\Theta(N)$ nodes (if a node is in the set, its successor is not)

2. "Bridge out" independent set and solve weighted problem recursively

List ranking: 1) independent set

- Each node flips a coin \{0,1\}
- A node is in the independent set if it chooses 1 and its predecessor chooses 0

• Each node enters independent set with prob $\frac{1}{2}$, so expected set size is $\Theta(N)$.
List ranking: 1) independent set

- Identifying independent-set nodes efficiently:
 - Sort by successor address
 - After sort, requires $O(\text{scan}(N)) = O(N/B)$ block transfers

List ranking: 2) bridging out

- Sort by successor address twice
- If middle node is in independent set, "splice" it out
- Gives a list of new pointers
- Sort back to original order and scan to integrate pointer updates
- Scans and sorts to compress and remove independent set nodes (homework)
List ranking: 3) merge in

- Uses sorts and scans

List ranking analysis

1. Produce an independent set of $O(N)$ nodes (keep retrying until random set is good enough)
2. "Bridge out" and solve recursively
3. Merge-in bridged-out nodes

All steps use a constant number of sorts and scans, so expected cost is $O(sort(N)) = O((N/B) \log_{M/B} (N/B))$ I/Os at this level of recursion

Gives recurrence $R(N) = R(N/c) + O(sort(N))$

B-Trees

A B-tree is a type of search tree ((a,b)-tree) designed for good memory performance

- Common approach for storing searchable, ordered data, e.g., databases, filesystems.

Operations

- Updates: Insert/Delete
- Queries
 - Search: is the element there
 - Successor/Predecessor: find the nearest key
 - Range query: return all objects with keys within a range
 - ...

B-tree/(2,3)-tree

- Objects stored in leaves
- Leaves all have same depth
- Root has at most B children
- Other internal nodes have between $B/2$ and B children
B-tree search

- Compare search key against partitioning keys and move to proper child.
- Cost is $O(\text{height} \times \text{node size})$

B-tree insert

- Search for where the key should go.
- If there's room, put it in

B-tree insert

- Search for where the key should go.
- If there's no room, split the node
- Splits may propagate up tree

B-tree inserts

- Splits divide the objects / child pointers as evenly as possible.
- If the root splits, add a new parent (this is when the height of the tree increases)
- Deletes are a bit more complicated, but similar — if a node drops below $B/2$ children, it is merged or rebalanced with some neighbors.
B-tree analysis

Search
- All nodes (except root) have at least $\Omega(B)$ children \Rightarrow height of tree is $O(\log_B N)$
- Each node fits in a block
- Total search cost is $O(\log_B N)$ block transfers.

B-tree analysis

Insert (and delete):
- Every split of a leaf results in an insert into a height-1 node.
- In general, a height-h split causes a height-$(h+1)$ insert.
- There must be $\Omega(B)$ inserts in a node before it splits again.
- An insert therefore pays for $\sum (1/B) = O(1/B)$ splits, each costing $O(1)$ block transfers.
- Searching and updating the keys along the root-to-leaf path dominates for $O(\log_B N)$ block transfers.

Sorting with a search tree?

Consider the following RAM sort algorithm:
1. Build a balanced search tree
2. Repeatedly delete the minimum element from the tree
Runtime is $O(N \log N)$

Does this same algorithm work in the I/O model?
- Just using a B-tree is $O(N \log_B N)$ which is much worse than $O((N/B) \log_{M/B}(N/B))$.

Buffer tree

Somewhat like a B-tree:
- when nodes gain too many children, they split evenly, using a similar split method
- all leaves are at the same depth
Unlike a B-tree:
- queries are not answered online (they are reported in batches)
- internal nodes have $\Theta(M/B)$ children
- nodes have buffers of size $\Theta(M)$
Buffer-tree insert

- Start at root. Add item to end of buffer.
- If buffer is not full, done.
- Otherwise, partition the buffer and send elements down to children.

Analysis ideas:
- Inserting into a buffer costs $O(1 + \frac{k}{B})$ for k elements inserted
- On overflow, partitioning costs $O(\frac{M}{B})$ to load entire buffer. Then $\frac{M}{B}$ "scans" are performed, costing $O(\#\text{Ararrays} \times \text{total size}/B) = O(\frac{M}{B} + \frac{M}{B})$
- Flushing buffer downwards therefore costs $O(\frac{M}{B})$, moving $\Omega(M)$ elements, for a cost of $O(1/B)$ each per level
- An element may be moved down at each height, costing a total of $O(1/B \text{ height}) = O(1/B \log_{\frac{M}{B}}(N/B))$ per element

I/O Priority Queue

Supporting Insert and Extract-Min (no Decrease-Key here)
- Keep a buffer of $\Theta(M)$ smallest elements in memory
- Use a buffer tree for remaining elements.
- While smallest-element buffer is too full, insert 1 (maximum) element into buffer tree
- If smallest-element buffer is empty, flush leftmost path in buffer tree and delete the leftmost leafs
- Total cost is $O((N/B) \log_{\frac{M}{B}}(N/B))$ for N ops.
- Yields optimal sort.

Buffer-tree variations

- To support deletions, updates, and other queries, insert records in the tree for each operation, associated with timestamps.
- As records with the same key collide, merge them as appropriate.

Examples of applications:
- DAG shortest paths
- Circuit evaluation
- Computational geometry applications