Exact string searching

Given a text T of length n and pattern P of length m
"Quickly" find an occurrence (or all occurrences) of P
in T

A Naïve solution:
 Compare P with $T[i...i+m]$ for all i — $O(nm)$ time

How about $O(n+m)$ time? (Knuth Morris Pratt)
How about $O(n)$ preprocessing time and $O(m)$ search time?

TRIEs

Dictionary = {at, middle, miss, mist}
TRIEs (searching)

Consider searching a string of length m to see if it is a prefix of an element in the dictionary.
Search time depends on implementation of nodes.

$\textbf{e.g.}, \text{Search}(\text{"mid"})$

TRIEs (node implementation)

Consider searching a string of length m to see if it is a prefix of an element in the dictionary.
Consider an n-node trie over alphabet Σ, with $|\Sigma|=k$.

Implementation choices:

- **Array per node:** $O(nk)$ space, $O(m)$ time search
- **Tree per node:** $O(n)$ space, $O(m \log k)$ time search
- **Hash children:** $O(n)$ space, $O(m)$ time

Don’t need a separate table per node — can hash node pointer and child character.

$\text{Table.Lookup}((0x0054, t)) = 0x0932$

Compressed Tries

Also called PATRICIA tries/trees or radix trees.
All nodes with a single child are collapsed.
Edges now represent substrings.

Dictionary = \{at, middle, miss, mist\}

Takes less space in practice.

Insertion

Inserting string S into a compressed trie:

- Find longest common prefix
- Split edge if necessary
- Add remaining suffix

Insert(“midday”)

Takes $O(|S|)$ time.
Using Suffixes
Tries allow prefix searching. What about searching for any substring?
Store all the suffixes in a (compressed) trie
S = "nananabana"
⇒ Dictionary = {nanabana, nananabana, nanabanana, anabanana, nabana, abanana, banana, anana, nana, ana, na, a}

Typically use special character ($) at the end of a string to make sure every entry has a leaf.

Suffix Trees
A compressed trie on all suffixes of a string
S = "nananabana$"

Suffix Tree Representation
How do we store a suffix tree in O(n) space?
S = "nananabana$" |S| = n

Suffix Tree Construction
Simple algorithm:
T = empty
for i = 1 to n
insert(S[i..n],T)

Takes O(n^2) time in the worst case
Suffix Tree Construction

$S = \text{nana}\text{banana}$.

1. Inserting "nanabanana" matches "nana": 4 comparisons.
2. Inserting "anabanana" will match "ana": 3 comparisons.
3. Then "$\text{banana}\$" and "$\text{abana}\$"...
First Improvement
Consider insert of "xAB" (nanabanana$)
Suppose "xA" (nana) is a prefix in the tree
Then "A" (ana) is a prefix in the tree
⇒ Don't need to match A again — assume it's there.

Suffix Tree Construction
S = nanabanana$
\uparrow \uparrow \downarrow \downarrow
nanabanana$
\begin{array}{c}
\text{nana} \\
\text{banana} \\
\text{nabanana}$
\end{array}
\begin{array}{c}
\text{nana} \\
\text{banana} \\
\text{nabanana}$
\end{array}

inserting "nanabanana$" matches "nana": 4 comparisons

Suffix Tree Construction
S = nanabanana$
\uparrow \uparrow \downarrow \downarrow
nanabanana$
\begin{array}{c}
\text{ana} \\
\text{banana} \\
\text{nabanana}$
\end{array}
\begin{array}{c}
\text{ana} \\
\text{banana} \\
\text{nabanana}$
\end{array}

inserting "ananabanana$", "ana" already matched.
just follow "a..." edge and split : 0 comparisons
Suffix Tree Construction

S = nananabanana$

inserting "nabanana$", "na" already matched.
just follow "n..." edge and split : 0 comparisons

15-853 Page 21

Suffix Tree Construction

S = nananabanana$

inserting "abanana$", "a" already matched.
just follow "a..." edge and split : 0 comparisons

15-853 Page 22

Suffix Tree Construction

S = nananabanana$

15-853 Page 23

Suffix Tree Construction

S = nananabanana$

15-853 Page 24
Suffix Tree Construction

$S = \text{nananabanana}$

Uh oh. Yes, "nana" is already there, but it takes extra work to follow intermediate nodes.

Second Improvement: Suffix Links

For every internal node "xA", keep a pointer to the node for "A".

Getting from xA to A becomes cheaper — follow suffix links!
Suffix Tree Construction

$ S = \text{nananabanana}$

Follow nearest (parent of new node's) suffix link to get most of the way to “nana”

Page 29

Suffix Tree Construction

$ S = \text{nananabanana}$

After inserting “nana$”, “nana” internal node exists. Connect “anana” to “nana”

Page 30

Suffix Tree Construction

$ S = \text{nananabanana}$

Follow nearest suffix link to get from “nana” to “ana”

Page 31

Suffix Tree Construction

$ S = \text{nananabanana}$

Page 32
Suffix Tree Construction

Algorithm:
1. Search for $S[i..j-1]$, incrementing j until no match, i.e., $S[i..j-1]$ in tree but not $S[i..j]$.
2. If search is in middle of an edge:
 - then split edge at $S[i..j-1]$ and add new child of $S[i..j-1]$ with suffix $S[j..n]$.
3. Use parent's suffix link to find $S[i+1..j-1]$ and split edge here if not already split.
4. If split edge in (2), add suffix link from $S[i..j-1]$ to $S[i+1..j-1]$.

Almost Correct Analysis

Each increment of j takes $O(1)$ time
- Just search one more character.
Each iteration of i takes $O(1)$ additional time
- Just following suffix link (or starting from root) to get from $S[i..j-1]$ to $S[i+1..j-1]$.

⇒ total time is $O(n)$ because i and j are each incremented n times.

What's wrong with this argument?

Following Suffix Links

Suppose $S[i..j-1]$ node is not a new node, then suffix link from $S[i..j-1]$ to $S[i+1..j-1]$ already exists, so find $S[i+1..j-1]$ in $O(1)$ time.
Following Suffix Links
Suppose \(S[i..j-1] \) is a new node (i.e., resulting from an edge split)

1. Go to parent node \(S[i.k] \), for some \(i \leq k < j-1 \)
2. Follow suffix link to \(S[i+1..k] \)
3. Search down to \(S[i+1..j-1] \)

 not guaranteed to be \(O(1) \)

This node has a suffix link!
Thus, \(k \) must increase in next iteration!

Better Analysis
\[S = \]

\[\text{current} \] \[\text{matched} \] \[\text{nearest} \] \[\text{sufffix} \] \[\text{prefix} \] \[\text{sufffix link} \] (\(k \) not maintained by algorithm)

\(j \): Each increment of \(j \) takes \(O(1) \) time
\(k \): If searching from \(S[i+1..k] \) to \(S[i+1..j-1] \) follows \(r \) edges, then \(k \) increases by at least \(r \)
\(i \): Each iteration of \(i \) takes \(O(1) \) additional time

\(\Rightarrow \) total time is \(O(n) \) because \(i, j, \) and \(k \) are each incremented at most \(n \) times.

Extending to multiple lists
Suppose we want to match a pattern with a dictionary of \(m \) texts with a total length of \(n \)

Concatenate all texts (interspersed with special characters) and construct a common suffix tree
(Optional) truncate tree below special characters
Time : \(O(n+m) = O(n) \)
or
Construct suffix tree on first text, then insert suffixes of second text and so on.
Time: also \(O(n) \)

Longest Common Substring
Find the longest string that is a substring of both \(S_1 \) and \(S_2 \)

Construct a common suffix tree for both texts
All leaves should be labeled with \(S_1 \) and/or \(S_2 \)
Any node with a descendent labeled \(S_1 \) and \(S_2 \) is a common substring
The "deepest" such node is the longest common substring
Takes linear time with a tree traversal
Common substrings of m texts

Given m texts of total length n
Given some value 1 \leq k \leq m, find the longest string
that is a substring of at least k texts

Construct a common suffix tree, labeling each leaf
with the text it comes from
For every internal node, find the number of
distinctly labeled descendents: O(m) time per
node.
Can report for all k with a single tree traversal
time: O(mn) — not linear