Parallel Techniques

Some common themes in "Thinking Parallel"
1. Working with collections.
 - map, selection, reduce, scan, collect
2. Divide-and-conquer
 - Even more important than sequentially
 - Merging, matrix multiply, FFT, ...
3. Contraction
 - Solve single smaller problem
 - List ranking, graph contraction
4. Randomization
 - Symmetry breaking and random sampling

Working with Collections

- reduce ⊗ [a, b, c, d, ...]
 = a ⊗ b ⊗ c ⊗ d + ...

- scan ⊗ ident [a, b, c, d, ...]
 = [ident, a, a ⊗ b, a ⊗ b ⊗ c, ...]

- sort compF A

- collect [[2,a), (0,b), (2,c), (3,d), (0,e), (2,f)]
 = [(0, [b,e]), (2, [a,c,f]), (3, [d])]

Example of scan: parentheses matching

The parentheses matching problem:
- Check if a set of a single kind of parentheses match
- E.g. (()(()())) matches ((()())))(()() does not
- Easy to do serially by scanning left to right keeping a counter.
- How do we do this in parallel
Example of scan: parentheses matching

The parentheses matching using a scan:

function parenthesesMatch(S) =
 let
 A = {if c == '(' then 1 else -1: c in S};
 Sums = scan(add,0,A);
 in (reduce(min,Sums) >= 0)

Can also do it with a map and reduce.

Example of Collect: Building an Index

Problem: Given a set of documents each a string, compute an index that maps words to documents.

[[(1,"this is the first document"),
 (2,"this is the second"),
 (3,"the third"),
 (4,"and the fourth")]

[("and",[4]),("first",[1]),...,("is",[1,2]),...,
 ("the",[1,2,3,4]),("this",[1,2]),("third",[3])]

Example of Collect: Building an Index

Problem: Given a set of documents each with a sequence of words, compute an index that maps words to documents.

function makeIndex D =
 let
 a = flatten({{(w,i) : w in wordify(d)}
 : (i,d) in D})
 in collect(a);

Example of Collect: Building an Index

function makeIndex D =
 let
 a = flatten({{(w,i) : w in wordify(d)}
 : (i,d) in D})
 in collect(a);

MapReduce

function mapReduce(MAP,REDUCE,documents) =
 let
 temp = flatten({MAP(d) : d in documents});
 in flatten({REDUCE(k,vs) : (k,vs) in collect(temp)});

function mapRed(M,R) = (D => mapReduce(M,R,D));

wordcount = mapReduce(d => {(w,1) : w in wordify(d)},
 (w,c) => [(w,sum(c))]);

wordcount(["this is is document 1",
 "this is is document 2"]);
Technique 2: Divide-And-Conquer

- Merging
- Matrix multiplication
- Matrix inversion
- FFT
- K-d trees

Example: Merging

Merge(nil, l2) = l2
Merge(l1, nil) = l1
Merge(h1::t1, h2::t2) =
 if (h1 < h2) h1::Merge(t1, h2::t2)
 else h2::Merge(h1::t1, t2)

What about in parallel?

The Split Operation

```
fun split (p, empty) = (empty, empty)
  | split (p, node(v, L, R)) =
    if p < v then
      let val (L1, R1) = split(p, L)
      in (L1, node(v, R1, R)) end
    else
      let val (L1, R1) = split(p, R)
      in (node(v, L, L1), R1) end;
```

Merging

Merge(A, B) =
 let
 Node(A_L, m, A_R) = A
 (B_L, B_R) = split(B, m)
 in
 Node(Merge(A_L, B_L), m, Merge(A_R, B_R))

Span = $O(\log^2 n)$
Work = $O(n)$

Merge in parallel

m

A

B

A_L

B_R

B_L

A_R

Merge(A_L, B_L) Merge(A_R, B_R)
MergeSort

function mergeSort(S) =
if (#S < 2) S
else merge(mergeSort(S[0:#S/2]), mergesort(S[#S/2:#S]))

W(n) = 2 W(n/2) + O(n) = O(n log n)

What about the span?

Matrix Multiplication

Fun A*B {
if #A < k then baseCase.
C_{11} = A_{11}*B_{11} + A_{12}*B_{21}
C_{12} = A_{11}*B_{12} + A_{12}*B_{22}
C_{21} = A_{21}*B_{11} + A_{22}*B_{21}
C_{22} = A_{21}*B_{12} + A_{22}*B_{22}
return C
}

W(n) = 8W(n/2) + O(n^2)
D(n) = D(n/2) + O(1)
Parallelism = W
D = O \left(\frac{n^3}{\log n} \right)

Matrix Inversion

fun invert(M) {
if small baseCase
D^{-1} = invert(D)
S = A - BD^{-1}C
S^{-1} = invert(S)
E = S^{-1}
F = S^{-1}BD^{-1}
G = -D^{-1}CS^{-1}
H = D^{-1} + D^{-1}CS^{-1}BD^{-1}
M^{-1} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}
M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}

W(n) = 2W(n/2) + 6W_{c}(n/2)
D(n) = 2D(n/2) + 6D_{c}(n/2)
O(n^3)
Parallelism = \frac{W}{D} = O(n^3)

Fourier Transform

function fft(a,w) =
if #a == 1 then a
else
let r = {fft(b, even_elts(w)):
 b in [even_elts(a),odd_elts(a)]}
in {a + b * w : a in r[0] ++ r[0];
 b in r[1] ++ r[1];
 w in w};

W(n) = 2W(n/2) + O(n)
D(n) = D(n/2) + O(1)
O(n log n)
Parallelism = \frac{W}{D} = O(n)
Spatial Decompositions: Revisited

Typically consist of:
- Split the data points into some constant number of parts. This is similar to the selection in Quicksort.
- Recursively subdivide within each part.

Both of these are easy to parallelize, but problematic if highly imbalanced.

Callahan-Kosaraju: Build Tree

Function Tree(P)
if |P| = 1 then return leaf(P)
else
 \(d_{\text{max}} = \text{dimension of } l_{\text{max}} \)
 \(P_1, P_2 = \text{split } P \text{ along } d_{\text{max}} \text{ at midpoint} \)
 Return Node(Tree(P_1), Tree(P_2), \(l_{\text{max}} \))

KK: Generating the Realization

Function \(\text{wsr}(T) \)
if leaf(T) return \(\emptyset \)
else return \(\text{wsr}(\text{left}(T)) \cup \text{wsr}(\text{right}(T)) \)

Function \(\text{wsrP}(T_1, T_2) \)
if wellSep(T_1, T_2) return \{(T_1, T_2)\}
else if \(l_{\text{max}}(T_1) > l_{\text{max}}(T_2) \) then
 return \(\text{wsrP}(\text{left}(T_1), T_2) \cup \text{wsrP}(\text{right}(T_1), T_2) \)
else
 return \(\text{wsrP}(T_1, \text{left}(T_2)) \cup \text{wsrP}(T_1, \text{right}(T_2)) \)

Bounding Volume Hierarchy: Top Down

Find bounding box of objects
Split objects into two groups
Recurse
Bounding Volume Hierarchy

Find bounding box of objects
Split objects into two groups
Recurse

Parallel Techniques

Some common themes in "Thinking Parallel"

1. Working with collections.
 - map, selection, reduce, scan, collect
2. Divide-and-conquer
 - Even more important than sequentially
 - Merging, matrix multiply, FFT, ...
3. Contraction
 - Solve single smaller problem
 - List ranking, graph contraction
4. Randomization
 - Symmetry breaking and random sampling