Clarification on cache-oblivious matrix multiplication

Array storage

How many blocks does a size-N array occupy?

- If it's aligned on a block (usually true for cache-aware), it takes exactly $\lceil N/B \rceil$ blocks

- If you're unlucky, it's $\lceil N/B \rceil + 1$ blocks. This is generally what you need to assume for cache-oblivious algorithms as you can't force alignment

- In either case, it's $\Theta(1+N/B)$ blocks

Row-major matrix

If you look at the full matrix, it's just a single array, so rows appear one after the other

- So entire matrix fits in $\lceil N^2/B \rceil + 1 = \Theta(1+N^2/B)$ blocks

Row-major submatrix

(This is the part that was probably not clear)

- In a submatrix, rows are not adjacent in slow memory

- Need to treat this as k arrays, so total number of blocks to store submatrix is $k\lceil k/B \rceil + 1 = \Theta(k^2/B)$
Row-major submatrix

- Recall we had the recurrence
 \[\text{Mult}(N) = 8 \text{ Mult}(N/2) + \Theta(N^2/B) \]
 (1)
 The question is when does the base case occur here? Specifically, does a \(\Theta(\sqrt{M}) \times \Theta(\sqrt{M}) \) matrix fit in cache, i.e., does it occupy at most \(M/B \) different blocks?
- If a \(\Theta(J/M) \times \Theta(J/M) \) fits in cache, we stop the analysis at a \(\Theta(J/M) \) size — lower levels are free. i.e., \(\text{Mult}(\Theta(J/M)) = \Theta(M/B) \)
 (2)
- Solving (1) with (2) as a base case gives
 \[\text{Mult}(N) = \Theta(N^2/B + N^3/B/M) \]

Is that assumption correct?

Does a \(\Theta(J/M) \times \Theta(J/M) \) matrix occupy at most \(\Theta(M/B) \) different blocks?
- We have a formula from before. A \(k \times k \) submatrix requires \(\Theta(k + k^2/B) \) blocks;
- so a \(\Theta(J/M) \times \Theta(J/M) \) submatrix occupies roughly \(J/M + M/B \) blocks
- The answer is "yes" only if \(\Theta(J/M + M/B) = \Theta(M) \) if \(J/M \leq M/B \), or \(M \geq B^2 \).
- If "no," analysis (base case) is broken — recursing into the submatrix will still require more I/Os.

Fixing the base case

We saw 2 fixes in class
1. Just assume the tall cache assumption that \(M \geq B^2 \).
 Then the base case is correct, completing the analysis.
2. Change the matrix layout to Z-morton:
 - In this layout, a submatrix is contiguous.
 - Here a recursive \(k \times k \) submatrix is a single subarray (fitting in \(\Theta(1+k^2/B) \) blocks) not the multiple arrays (requiring \(\Theta(k+k^2/B) \) blocks) we had before.