10/21/10

15-853: Algorithms in the Real World

Locality I: Cache-aware algorithms
- Introduction
- Sorting
- List ranking
- B-trees
- Buffer trees

RAM Model

Standard theoretical model for analyzing algorithms:
- Infinite memory size
- Uniform access cost
- Evaluate an algorithm by the number of instructions executed

I/O Model

Abstracts a single level of the memory hierarchy
- Fast memory (cache) of size M
- Accessing fast memory is free, but moving data from slow memory is expensive
- Memory is grouped into size-B blocks of contiguous data
- Cost: the number of block transfers (or I/Os) from slow memory to fast memory.

Real Machine Example

Pentium 4
- CPU
 - ~ 0.2ns / instruction
 - 8 Registers
- L1 cache
 - size: 8KB
 - line size: 64B
 - access time: 1ns
- L2 cache
 - size: 512KB
 - line size: 128B
 - access time: 8ns
- Memory
 - access time: 150ns
- Disc
 - access time: ~4ms = 4x10^6 ns
- The cost of transferring data is important
 ⇒ Design algorithms with locality in mind

CPU L1 L2 Main Memory Disc

Fast Memory

Slow Memory
Notation Clarification

• \(M \): the number of objects that fit in memory, and
• \(B \): the number of objects that fit in a block
• So for word-size objects, and memory size 512KB, \(M = 128,000 \)

Why a 2-Level Hierarchy?

• It’s simpler than considering the multilevel hierarchy
• A single level may dominate the runtime of the application, so designing an algorithm for that level may be sufficient
• Considering a single level exposes the algorithmic difficulties — generalizing to a multilevel is often straightforward
• We’ll see cache-oblivious algorithms later as a way of designing for multi-level hierarchies

What Improvement Do We Get?

Examples
– Adding all the elements in a size-\(N \) array (scanning)
– Sorting a size-\(N \) array
– Searching a size-\(N \) data set in a good data structure

<table>
<thead>
<tr>
<th>Problem</th>
<th>RAM Algorithm</th>
<th>I/O Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning</td>
<td>(\Theta(N))</td>
<td>(\Theta(N/B))</td>
</tr>
<tr>
<td>Sorting</td>
<td>(\Theta(N \log_2 N))</td>
<td>(\Theta((N/B) \log_{M/B}(N/B)))</td>
</tr>
<tr>
<td>Searching</td>
<td>(\Theta(\log_2 N))</td>
<td>(\Theta(\log_2 N))</td>
</tr>
<tr>
<td>Permuting</td>
<td>(\Theta(N))</td>
<td>(\Theta(\min(N,\text{sort}(N))))</td>
</tr>
</tbody>
</table>

– For 4-byte words on example Pentium 4
 – \(B \approx 32 \) in L2-cache, \(B \approx 2000 \) on disc
 – \(\log_2 B \approx 5 \) in L2-cache, \(\log_2 B \approx 11 \) on disc

Sorting

Standard MergeSort algorithm:
• Split the array in half
• MergeSort each subarray
• Merge the sorted subarrays
• Number of computations is \(\Theta(N \log N) \) on an \(N \)-element array

How does the standard algorithm behave in the I/O model?
• A size-N array occupies at most $\lceil N/B \rceil + 1$ blocks
• Each block is loaded once during merge, assuming memory size $M \geq 3B$

MergeSort Analysis

• Sorting in memory is free, so the base case is $S(M) = \Theta(M/B)$ to load a size-M array
• $S(N) = 2S(N/2) + \Theta(N/B)$
 \[\Rightarrow S(N) = \Theta((N/B)(\log_2(N/M) + 1)) \]

I/O Efficient MergeSort

• Instead of doing a 2-way merge, do a $\Theta(M/B)$-way merge
IAOMergeSort:
• Split the array into $\Theta(M/B)$ subarrays
• IO MergeSort each subarray
• Perform a $\Theta(M/B)$-way merge to combine the subarrays

k-Way Merge

• Assuming $M/B \geq k+1$, one block from each array fits in memory
• Therefore, only load each block once
• Total cost is thus $\Theta(N/B)$
IOMergeSort Analysis

- Sorting in memory is free, so the base case is $S(M) = \Theta(M/B)$ to load a size-M array.
- $S(N) = (M/B)S(N/B) + O(N/B)$
- $S(N) = O((N/B)(\log_{M/B}(N/M)+1))$

MergeSort Comparison

Traditional MergeSort costs $O((N/B)\log_2(N/B))$ I/Os on size-N array.
- IOMergeSort is I/O efficient, costing only $O((N/B)\log_{M/B}(N/B))$
- The new algorithm saves $O(\log_2(M/B))$ fraction of I/Os.

How significant is this savings?
- Consider L2 cache to main memory on Pentium 4
 - $M = 128,000$, $B = 32$, so $\log_2(M/B) \approx 12x$ savings
- Main memory to disc has even bigger savings.

List Ranking

- Given a linked list, calculate the *rank* of (number of elements before) each element.
- Trivial algorithm is $O(N)$ computation steps.

List ranking in I/O model

- Assume list is stored in $\sim N/B$ blocks!
- May jump in memory a lot.
- Example: $M/B = 3$, $B = 2$, least-recently-used eviction
- In general, each pointer can result in a new block transfer, for $O(N)$ I/Os.
Why list ranking?

- Recovers locality in the list (can sort based on the ranking)

- Generalizes to trees via Euler tours

- Useful for various forest/tree algorithms like least common ancestors and tree contraction

- Also used in graph algorithms like minimum spanning tree and connected components

List ranking outline

1. Produce an independent set of $O(N)$ nodes (if a node is in the set, its successor is not)

2. “Bridge out” independent set and solve weighted problem recursively

List ranking: 1) independent set

- Each node flips a coin \(\{0,1\} \)
- A node is in the independent set if it chooses 1 and its predecessor chooses 0

- Each node enters independent set with prob \(\frac{1}{2} \), so expected set size is $O(N)$.
List ranking: 1) independent set

Identifying independent-set nodes efficiently:
- Sort by successor address
- After sort, requires $O(\text{scan}(N)) = O(N/B)$ block transfers

List ranking: 2) bridging out

- Sort by successor address twice
- If middle node is in independent set, "splice" it out
- Gives a list of new pointers
- Sort back to original order and scan to integrate pointer updates

Scans and sorts to compress and remove independent set nodes (homework)
List ranking: 3) merge in

List ranking analysis
1. Produce an independent set of $O(N)$ nodes (keep retrying until random set is good enough)
2. "Bridge out" and solve recursively
3. Merge-in bridged-out nodes

All steps use a constant number of sorts and scans, so expected cost is $O(sort(N)) = O((N/B) \log M/B) I/Os at this level of recursion
Gives recurrence $R(N) = R(N/c) + O(sort(N))$

B-Trees
A B-tree is a type of search tree ((a,b)-tree) designed for good memory performance
- Common approach for storing searchable, ordered data, e.g., databases, filesystems.

Operations
- Updates: Insert/Delete
- Queries
 - Search: is the element there
 - Successor/Predecessor: find the nearest key
 - Range query: return all objects with keys within a range
 - ...

B-tree/(2,3)-tree
- Objects stored in leaves
- Leaves all have same depth
- Root has at most B children
- Other internal nodes have between $B/2$ and B children
B-tree search
- Compare search key against partitioning keys and move to proper child.
- Cost is $O(\text{height} \times \text{node size})$

B-tree insert
- Search for where the key should go.
- If there's room, put it in

B-tree inserts
- Splits divide the objects / child pointers as evenly as possible.
- If the root splits, add a new parent (this is when the height of the tree increases)
- Deletes are a bit more complicated, but similar — if a node drops below $B/2$ children, it is merged or rebalanced with some neighbors.
B-tree analysis

Search
- All nodes (except root) have at least \(\Omega(B) \) children \(\Rightarrow \) height of tree is \(O(\log_B N) \)
- Each node fits in a block
- Total search cost is \(O(\log_B N) \) block transfers.

Insert (and delete):
- Every split of a leaf results in an insert into a height-1 node.
- In general, a height-\(h \) split causes a height-(\(h+1 \)) insert.
- There must be \(\Omega(B) \) inserts in a node before it splits again.
- An insert therefore pays for \(\sum (1/B)^h = O(1/B) \) splits, each costing \(O(1) \) block transfers.
- Searching and updating the keys along the root-to-leaf path dominates for \(O(\log_B N) \) block transfers.

Sorting with a search tree?

Consider the following RAM sort algorithm:
1. Build a balanced search tree
2. Repeatedly delete the minimum element from the tree
Runtime is \(O(N \log N) \)

Does this same algorithm work in the I/O model?
- Just using a B-tree is \(O(N \log_B N) \) which is much worse than \(O((N/B) \log_{M/B} (N/B)) \)

Buffer tree

Somewhat like a B-tree:
- when nodes gain too many children, they split evenly, using a similar split method
- all leaves are at the same depth
Unlike a B-tree:
- queries are not answered online (they are reported in batches)
- internal nodes have \(\Theta(M/B) \) children
- nodes have buffers of size \(\Theta(M) \)
Buffer-tree insert

- Start at root. Add item to end of buffer.
- If buffer is not full, done.
- Otherwise, partition the buffer and send elements down to children.

I/O Priority Queue

Supporting Insert and Extract-Min (no Decrease-Key here)
- Keep a buffer of $O(M)$ smallest elements in memory
- Use a buffer tree for remaining elements.
- While smallest-element buffer is too full, insert 1 (maximum) element into buffer tree
- If smallest-element buffer is empty, flush leftmost path in buffer tree and delete the leftmost leafs
- Total cost is $O(N/B \log_{M/B}(N/B))$ for N ops.
- Yields optimal sort.

Buffer-tree variations

- To support deletions, updates, and other queries, insert records in the tree for each operation, associated with timestamps.
- As records with the same key collide, merge them as appropriate.

Examples of applications:
- DAG shortest paths
- Circuit evaluation
- Computational geometry applications