15-853: Algorithms in the Real World

Nearest Neighbors
- Callahan-Kosaraju
- Use in all nearest neighbors
- Use in N-body codes

Callahan-Kosaraju

Well separated pair decompositions
- A decomposition of points in d-dimensional space

Applications
- N-body codes (calculate interaction forces among n bodys)
- K-nearest-neighbors $O(n \log n)$ time

Similar to k-d trees (e.g. quad-trees) but better theoretical properties

Tree decompositions

A spatial decomposition of points

A “realization”

A single path between any two leaves consisting of tree edges up, an interaction edge across, and tree edges down.

interaction edge
A “well-separated realization”

A realization such that the endpoints of each interaction edge is “well separated”

Goal: show that the number of interaction edges is $O(n)$

Overall approach

Build tree decomposition: $O(n \log n)$ time
Build well-separated realization: $O(n)$ time

Depth of tree = $O(n)$ worst case, but not in practice

We can bound number of interaction edges to $O(n)$
- For both n-body and nearest-neighbors we only need to look at the interaction edges

Callahan Kosaraju Outline

- Some definitions
- Building the tree
- Generating well separated realization
- Bounding the size of the realization
- Using it for nearest neighbors

Some Definitions

Bounding Rectangle $R(P)$

Smallest rectangle that contains a set of points P

l_{max}: maximum length of a rectangle

Well Separated:

r = smallest radius that can contain either rectangle
s = separation constant
$d > s \times r$
More Definitions

Interaction Product
\[A \otimes B = \{ (p, p') : p \in A, p' \in B, p \neq p' \} \]

A **Realization** of \(A \otimes B \)
Is a set \(\{ \{ A_1, B_1 \}, \{ A_2, A_3 \}, \ldots, \{ A_k, B_j \} \} \)
such that
1. \(A_i \subseteq A_1, B_i \subseteq B \) \(i = 1 \ldots k \)
2. \(A_i \cap B_i = \varnothing \)
3. \((A_i \otimes B_i) \cap (A_j \otimes B_j) = \varnothing \) \(i \neq j \)
4. \(A \otimes B = \bigcup_{i=1}^{k} (A_i \otimes B_i) \)

This formalizes the “cross edges”

A well-separated realization
\(\{ \{ A_1, B_1 \}, \{ A_2, A_3 \}, \ldots, \{ A_k, B_j \} \} \)
such that \(R(A_i) \) and \(R(B_i) \) are well separated

A well-separated pair decomposition =
Tree decomposition of \(P \) + well-separated realization of \(P \otimes P \) where the subsets are the nodes of the tree

A well-separated pair decomposition

\(P = \{ a, b, c, d, e, f, g \} \)

Realization of \(P \otimes P = \{(a,b,c)\{e,f,g\}, \{(d)\{e,f\}, \{(d)\{b,c\}, \{(a)\{b,c\}, \{(a)\{d\}, \{(b)\{c\}, \{(d)\{g\}, \{(e)\{f\}\}} \}

Algorithm: Build Tree

Function Tree(P)
if \(|P| = 1 \) then return leaf(P)
else
\(d_{max} \) = dimension of \(l_{max} \)
\(P_1, P_2 \) = split \(P \) along \(d_{max} \) at midpoint
Return Node(Tree(P_1), Tree(P_2), \(l_{max} \))
Runtime: naive

Naively:
- Each cut could remove just one point

\[T(n) = T(n-1) + O(n) = O(n^2) \]

This is no good!!

Runtime: better

1. Keep points in linked list sorted by each dimension
2. In selected dimension come in from both sides until cut is found
3. Remove cut elements and put aside
4. Repeat making cuts until size of largest subset is less than \(\frac{2}{3} n \)
5. Create subsets and make recursive calls

\[T(n) = \sum_{i=1}^{k} T(n_i) + O(n) \]

Algorithm: Generating the Realization

```python
def wsr(T):
    if leaf(T) return \( \emptyset \)
    else return wsr(left(T)) \cup wsr(right(T)) \cup wsrP(left(T), right(T))

function wsrP(T_1, T_2):
    if wellSep(T_1, T_2) return \( \{(T_1, T_2)\} \)
    else if \( l_{\text{max}}(T_1) > l_{\text{max}}(T_2) \)
        return wsrP(left(T_1), T_2) \cup wsrP(right(T_1), T_2)
    else
        return wsrP(T_1, left(T_2)) \cup wsrP(T_1, right(T_2))
```

WSR

![WSR Diagram](image)

Bounding Interactions

Just an intuitive outline:
- Can show that tree nodes do not get too thin
- Can bound # of non-overlapping rectangles that can touch a cube of fixed size
- Can bound number of interaction per tree node

Total calls to \(\text{wsrP} \) is bounded by

\[
2n \left(2s\sqrt{d} + 2\sqrt{d} + 1 \right) = O(n)
\]

This bounds both the time for WSR and the number of interaction edges created.

Summary so far

- \(O(n \log n) \) time to build tree
- \(O(n) \) time to calculate WS Pair Decomposition
- \(O(n) \) edges in decomposition

Finding everyone’s nearest neighbor

Build well-separated pair decomposition with \(s = 2 \).
- Recall that \(d > sr = 2r \) to be well separated
- The furthest any pair of points can be to each other within one of the rectangles is \(2r \)
- Therefore if \(d > 2r \) then for a point in \(R_1 \) there must be another point in \(R_1 \) that is closer than any point in \(R_2 \). Therefore we don’t need to consider any points in \(R_2 \).
Finding everyone's nearest neighbor

Now consider a point p.
It interacts with all other points p' through an interaction edge that goes from:
1. p to p' (check these distances directly)
2. p to an ancestor R of p' (check distance to all descendants of R)
3. an ancestor of p to p' or ancestor of p' (p' cannot be closest node)

Step 2 might not be efficient, but efficient in practice and can be made efficient in theory.

Again: in pictures

The N-body problem

Calculate the forces among n "bodys". Naïve method requires considering all pairs and takes $O(n^2)$ time.
Using Kallahan-Kosaraju can get approximate answer in $O(n)$ time plus the time to build the tree.

Used in astronomy to simulate the motion of stars and other mass
Used in biology to simulate protein folding
Used in engineering to simulate PDEs (can be better than Finite Element Meshes for certain problems)
Used in machine learning to calculate certain Kernels

The spherical harmonics
The N-body problem

If a set of points in well-separated from \(p \), then can use the approximation instead of all forces.

Need "inverse" expansion to pass potential down from parents to children.

Translate and add "multipole" terms going up the tree. They add linearly.

Invert expansions across the interaction edges.
The N-body problem

If a set of points in well-separated from p, then can use the approximation instead of all forces. Need "inverse" expansion to pass potential down from parents to children.

Copy add and translate the inverse expansions down the tree. Calculate approximate total force at the leaves.

Total time is:
- $O(n)$ going up the tree
- $O(n)$ inverting across interaction edges
- $O(n)$ going down the tree

The constant in the big-O and the accuracy depend on the number of terms used. More terms is more costly but more accurate.