15-853:Algorithms in the Real World

Error Correcting Codes III (expander based codes)

- Expander graphs
- Low density parity check (LDPC) codes
- Tornado codes

Thanks to Shuchi Chawla for many of the slides

Error Correcting Codes Outline

Introduction
Linear codes
Read Solomon Codes

Expander Based Codes

- Expander Graphs
- Low Density Parity Check (LDPC) codes
- Tornado Codes

Why Expander Based Codes?

Linear codes like RS \& random linear codes
The other two give nearly optimal rates But they are slow :

Code	Encoding	Decoding*
Random Linear	$O\left(n^{2}\right)$	$O\left(n^{3}\right)$
RS	$O(n \log n)$	$O\left(n^{2}\right)$
LDPC	$O\left(n^{2}\right)$ or better	$O(n)$
Tornado	$O(n \log 1 / \varepsilon)$	$O(n \log 1 / \varepsilon)$

Assuming an (n, (1-p)n, (1- ε) pn+1) $)_{2}$ tornado code
*does not necessarily fix (d-1)/2 errors

Expander Graphs (non-bipartite)

Properties

- Expansion: every small subset ($k \leq \alpha n$) has many ($\geq \beta k$) neighbors
- Low degree - not technically part of the definition, but typically assumed

Expander Graphs (bipartite)

Properties

- Expansion: every small subset ($k \leq \alpha n$) on left has many ($\geq \beta k$) neighbors on right
- Low degree - not technically part of the definition, but typically assumed

Expander Graphs: Applications

Pseudo-randomness: implement randomized algorithms with few random bits
Cryptography: strong one-way functions from weak ones.
Hashing: efficient n-wise independent hash functions
Random walks: quickly spreading probability as you walk through a graph
Error Correcting Codes: several constructions
Communication networks: fault tolerance, gossipbased protocols, peer-to-peer networks

Expander Graphs: Eigenvalues

Expander Graphs: Constructions

Consider the normalized adjacency matrix $A_{i j}$ for an undirected graph G (all rows sum to 1)

Important parameters:size (n), degree (d), expansion (β)
The (x_{i}, λ_{i}) satisfying

$$
A x_{i}=\lambda_{i} x_{i}
$$

are the eigenvectors $\left(x_{i}\right)$ and eigenvalues $\left(\lambda_{i}\right)$ of A.

Consider the eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \lambda_{2} \geq \ldots$
For a d-regular graph, $\lambda_{0}=1$. Why?
The separation of the eigenvalues tell you a lot about the graph (we will revisit this several times).
If λ_{1} is much smaller than λ_{0} then the graph is an expander.
Expansion $\beta \geq\left(1 / \lambda_{1}\right)^{2} \quad 15-853$

Randomized constructions

- A random d-regular graph is an expander with a high probability
- Construct by choosing d random perfect matchings
- Time consuming and cannot be stored compactly

Explicit constructions

- Cayley graphs, Ramanujan graphs etc
- Typical technique - start with a small expander, apply operations to increase its size

Expander Graphs: Constructions

Expander Graphs: Constructions

Start with a small expander, and apply operations to make it bigger while preserving expansion

Start with a small expander, and apply operations to make it bigger while preserving expansion

Squaring

- G^{2} contains edge (u, w) if G contains edges (u, v)

Tensor Product (Kronecker product)

- $G=A \times B \quad$ nodes are $(a, b) \quad \forall a \in A$ and $b \in B$
- edge between (a, b) and (a^{\prime}, b^{\prime}) if A contains (a, a^{\prime}) and B contains $\left(b, b^{\prime}\right)$
- $A^{\prime}=A^{2}-1 / d I$
- $\lambda^{\prime}=\lambda^{2}-1 / d$
- $d^{\prime}<=d^{2}-d$

Size	\equiv
Degree	\uparrow
Expansion	\uparrow

$-\mathrm{n}^{\prime}=\mathrm{n}_{1} \mathrm{n}_{2}$

- $\lambda^{\prime}=\max \left(\lambda_{1}, \lambda_{2}\right)$
- $d^{\prime}=d_{1} d_{2}$

Size	\uparrow
Degree	\uparrow
Expansion	\downarrow

Expander Graphs: Constructions

Expander Graphs: Constructions

Start with a small expander, and apply operations to make it bigger while preserving expansion

Start with a small expander, and apply operations to make it bigger while preserving expansion

Zig-Zag produc \dagger

- "Multiply" a big graph with a small graph

$$
n_{2}=d_{1}
$$ $d_{2}=\sqrt{ } d_{1}$

Zig-Zag product

- "Multiply" a big graph with a small graph

15-853
Page14

Error Correcting Codes Outline

Introduction

For a graph with size n, degree d, and eigenvalue λ,

Linear codes

Read Solomon Codes

Expander Based Codes

- Expander Graphs
- Low Density Parity Check (LDPC) codes
- Tornado Codes

Now given a graph $H=\left(d^{4}, d, 1 / 5\right)$ and $G_{1}=\left(d^{4}, d^{2}, 2 / 5\right)$

$$
-G_{i}=G_{i-1}^{2} z z H \quad \text { (square, zig-zag) }
$$

Giving: $G_{i}=\left(n_{i}, d^{2}, 2 / 5\right)$ where $n_{i}=d^{4 i}$ (as desired)

Low Density Parity Check (LDPC) Codes

code
bits

Applications in the "real world"

10Gbase-T (IEEE 802.3an, 2006)

- Standard for 10 Gbits/sec over copper wire WiMax (IEEE 802.16e, 2006)
- Standard for medium-distance wireless. Approx $10 \mathrm{Mbits} / \mathrm{sec}$ over 10 Kilometers.

NASA

- Proposed for all their space data systems

Each row is a vertex on the right and each column is a vertex on the left.
A codeword on the left is valid if each right "parity check" vertex has parity 0.
The graph has $O(n)$ edges (low density)

History

Invented by Gallager in 1963 (his PhD thesis)
Generalized by Tanner in 1981 (instead of using parity and binary codes, use other codes for "check" nodes).

Mostly forgotten by community at large until the mid 90s when revisted by Spielman, MacKay and others.

Distance of LDPC codes

Consider a d-regular LPDC with ($\alpha, 3 d / 4$) expansion.
Theorem: Distance of code is greater than αn.
Proof. (by contradiction)
Assume a codeword with weight $v \leq \alpha n$.
Let V be the set of 1 bits in the codeword
It has $>3 / 4 \mathrm{dv}$ neighbors on the right
Average \# of 1s per such neighbor is $<4 / 3$.
To make average work, at least one has only 1 bit...which would cause an error since parity has to be at least 2 .

Correcting Errors in LDPC codes

We say a vertex is unsatisfied if parity $\neq 0$

Algorithm:

While there are unsatisfied check bits

1. Find a bit on the left for which more than $d / 2$ neighbors are unsatisfied
2. Flip that bit

Converges since every step reduces unsatisfied nodes by at least 1.
Runs in linear time.
Why must there be a node with more than $\mathrm{d} / 2$ unsatisfied neighbors? ${ }_{15-853}$

Proof continued:

- $\mathrm{u}_{\mathrm{i}}=$ unsatisfied
- $r_{i}=$ corrupt
- $s_{i}=$ satisfied with corrupt neighbors
$u_{i}+s_{i} \geq \frac{3}{4} d r_{i} \quad$ (by expansion)
$2 s_{i}+u_{i} \leq d r_{i} \quad$ (by counting edges)
$\frac{1}{2} d r_{i} \leq u_{i} \quad$ (by substitution)
$u_{i}<u_{0}$ (steps decrease u) $u_{0} \leq d r_{0}$ (by counting edges)
Therefore: $r_{i}<2 r_{0} \begin{aligned} & \text { i.e. number of corrupt bits cannot } \\ & \text { more than double }\end{aligned}$
If we start with at most an/4 corrupt bits we will never get an/2 corrupt bits but the distance is an

Coverges to closest codeword

Theorem: If \# of error bits is less than $\alpha \mathrm{n} / 4$ with 3d/4 expansion then the simple decoding algorithm will coverge to the closest codeword.

Proof: let:

- $u_{i}=\#$ of unsatisfied check bits on step i
- $r_{i}=\#$ corrupt code bits on step i
- $s_{i}=\#$ satisfied check bits with corrupt neighbors on step i
We know that u_{i} decrements on each step, but what about r_{i} ?

More on decoding LDPC

Simple algorithm is only guaranteed to fix half as many errors as could be fixed but in practice can do better.
Fixing (d-1)/2 errors is NP hard
Soft "decoding" as originally specified by Gallager is based on belief propagation---determine probability of each code bit being 1 and 0 and propagate probs. back and forth to check bits.

Encoding LDPC

Encoding can be done by generating G from H and using matrix multiply.
What is the problem with this?
Various more efficient methods have been studied

The loss model

Random Erasure Model:

- Each bit is lost independently with some probability μ
- We know the positions of the lost bits

For a rate of (1-p) can correct (1- ε)p fraction of the errors.

Seems to imply a

$(n,(1-p) n,(1-\varepsilon) p n+1)_{2}$
code, but not quite because of random errors assumption. required to equal zero (i.e the graph does not represent H).
We will assume $p=.5$.

Error Correction can be done with some more effort

Tornado codes

Will use d-regular bipartite graphs with n nodes on the left and pn on the right (notes assume $\mathrm{p}=.5$) Will need $\beta>d / 2$ expansion.

15-853

Tornado codes: Decoding

Assume that all the check bits are intact
Find a check bit such that only one of its neighbors is erased (an unshared neighbor)
Fix the erased code, and repeat.

Tornado codes: Decoding

Tornado codes: Encoding

Why is it linear time?

Need to ensure that we can always find such a check bit "Unshared neighbors" property

Consider the set of corrupted message bit and their neighbors. Suppose this set is small.
\Rightarrow at least one message bit has an unshared neighbor.

15-853

Tornado codes: Decoding

What if check bits are lost?

Can we always find unshared neighbors?

Cascading

- Use another bipartite graph to construct another level of check bits for the check bits
- Final level is encoded using RS or some other code
(see notes)
Also, [Luby et al] show that if we construct the graph from a specific kind of degree sequence, then we can always find unshared neighbors.

Cascading

Some extra slides

Encoding time

- for the first k stages: $|E|=d x|V|=O(k)$
- for the last stage: $\sqrt{ } \mathrm{k} \times \sqrt{ } \mathrm{k}=\mathrm{O}(\mathrm{k})$

Decoding time

- start from the last stage and move left
- again proportional to $|E|$
- also proportional to d, which must be at least $1 / \varepsilon$ to make the decoding work
Can fix kp(1-8) random erasures

Expander Graphs: Properties

Expander Graphs: Properties

Prob. Dist. $-\pi$; Uniform dist. $-u$
To show that $|A \pi-u| \cdot \lambda_{2}|\pi-u|$
Let $\pi=u+\pi^{\prime}$
Small $|\pi-u|$ indicates a large amount of "randomness"
Show that $|A \pi-u| \cdot \lambda_{2}|\pi-u|$
Therefore small $\lambda_{2} \Rightarrow$ fast convergence to uniform
u is the principle eigenvector
$A u=u$
π^{\prime} is perpendicular to u
$A \pi^{\prime} \cdot \lambda_{2} \pi^{\prime}$

Expansion $\beta^{1 / 4}\left(1 / \lambda_{2}\right)^{2}$
So, $A \pi \cdot u+\lambda_{2} \pi^{\prime}$
Thus, $|A \pi-u| \cdot \lambda_{2}\left|\pi^{\prime}\right|$

