Complete all problems. You are not permitted to look at solutions of previous year assignments. You can work together in groups, but all solutions have to be written up individually.

Problem 1: Conditional Probabilities (10pt)

Given the following conditional probabilities for a two state Markov Chain what factor would one save by using the conditional entropy instead of the unconditional entropy?

\[
\begin{align*}
p(w|w) &= 0.95 \\
p(b|w) &= 0.05 \\
p(w|b) &= 0.2 \\
p(b|b) &= 0.8
\end{align*}
\]

Problem 2: Arithmetic Codes (10pt)

Given the following probability model:

<table>
<thead>
<tr>
<th>Letter</th>
<th>(p(a_i))</th>
<th>(f(a_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>c</td>
<td>0.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Decode the 4 letter message given by 00011011010 assuming it was coded using arithmetic coding. Why is this message longer than if we simply had used a fixed-length code of 2 bits per letter, even though the entropy of the set \{0.1, 0.2, 0.7\} is just a little more than 1 bit per letter. Note: once you figure out how to do the decoding, it should not take more than five minutes on a calculator or scripting language.

Problem 3: Decoding Prefix Codes (20pt)

Being able to quickly decode prefix codes is extremely important in many applications. Assume you have a machine with word length \(w\) (e.g. 32 bits). Assume you are give some prefix code for a message set, and the longest codeword is \(w/2\) bits (or less). Assume that a sequence of codes is stored in memory broken into words (i.e. the first \(w\) bits are in the first word, etc.).

The naive way to decode is to use a binary tree and take constant time per bit by traversing the tree. Describe how to decode each codeword in constant time (independently of \(w\)). Hint, you can use \(O(2^w/2)\) preprocessing time, and the same amount of memory. Please don’t use more than half a page to describe the method.
Problem 4: Bounds on Prefix Codes (20pt)

A. Prove the first part of the Kraft-McMillan inequality for Prefix Codes. In particular show that for any prefix code C,
\[\sum_{(s,w) \in C} 2^{-l(w)} \leq 1. \]

B. Prove that if you have $n = 2^k$ codewords in a prefix code and that if one of them is shorter than k bits, then at least two must be longer than k bits.