
1

15-853 Page1

15-853:Algorithms in the Real World

Error Correcting Codes II
– Cyclic Codes
– Reed-Solomon Codes

15-853 Page2

Viewing Messages as Polynomials
A (n, k, n-k+1) code:
Consider the polynomial of degree k-1

p(x) = ak-1 xk-1 + L + a1 x + a0
Message: (ak-1, …, a1, a0)
Codeword: (p(1), p(2), …, p(n))

To keep the p(i) fixed size, we use ai ∈ GF(pr)
To make the i distinct, n < pr

Unisolvence Theorem: Any subset of size k of (p(1),
p(2), …, p(n)) is enough to (uniquely) reconstruct
p(x) using polynomial interpolation, e.g., LaGrange’s
Formula.

15-853 Page3

Polynomial-Based Code
A (n, k, 2s +1) code:

k 2s

Can detect 2s errors
Can correct s errors
Generally can correct α erasures and β errors if

α + 2β ≤ 2s

n

15-853 Page4

Correcting Errors
Correcting s errors:
1. Find k + s symbols that agree on a polynomial p(x).

These must exist since originally k + 2s symbols
agreed and only s are in error

2. There are no k + s symbols that agree on the
wrong polynomial p’(x)
- Any subset of k symbols will define p’(x)
- Since at most s out of the k+s symbols are in

error, p’(x) = p(x)

2

15-853 Page5

A Systematic Code
Systematic polynomial-based code

p(x) = ak-1 xk-1 + L + a1 x + a0

Message: (ak-1, …, a1, a0)
Codeword: (ak-1, …, a1, a0, p(1), p(2), …, p(2s))

This has the advantage that if we know there are no
errors, it is trivial to decode.

The version of RS used in practice uses something
slightly different than p(1), p(2), …

This will allow us to use the “Parity Check” ideas
from linear codes (i.e., HcT = 0?) to quickly test
for errors.

15-853 Page6

Reed-Solomon Codes in the Real World

(204,188,17)256 : ITU J.83(A)2

(128,122,7)256 : ITU J.83(B)
(255,223,33)256 : Common in Practice

– Note that they are all byte based
(i.e., symbols are from GF(28)).

Decoding rate on 1.8GHz Pentium 4:
– (255,251) = 89Mbps
– (255,223) = 18Mbps

Dozens of companies sell hardware cores that
operate 10x faster (or more)
– (204,188) = 320Mbps (Altera decoder)

15-853 Page7

Applications of Reed-Solomon Codes
• Storage: CDs, DVDs, “hard drives”,
• Wireless: Cell phones, wireless links
• Sateline and Space: TV, Mars rover, …
• Digital Television: DVD, MPEG2 layover
• High Speed Modems: ADSL, DSL, ..

Good at handling burst errors.
Other codes are better for random errors.

– e.g., Gallager codes, Turbo codes

15-853 Page8

RS and “burst” errors

They can both correct 1 error, but not 2 random errors.
– The Hamming code does this with fewer check bits

However, RS can fix 8 contiguous bit errors in one byte
– Much better than lower bound for 8 arbitrary errors

bitscheck 88)7log(8
81

1log ≈−>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ n

nn
L

check bitscode bits

112047Hamming (211-1, 211-11-1, 3)2

162040RS (255, 253, 3)256

Let’s compare to Hamming Codes (which are “optimal”).

3

15-853 Page9

Galois Field
GF(23) with irreducible polynomial: x3 + x + 1
α = x is a generator

10011α7

7101x2 + 1α6

6111x2 + x + 1α5

5110x2 + xα4

4011x + 1α3

3100x2α2

2010xα

Will use this as an example.

15-853 Page10

Discrete Fourier Transform (DFT)
Another View of polynomial-based codes
α is a primitive nth root of unity (αn = 1) – a generator

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−−−

−

−

)1)(1()1(21

)1(242

12

1

1
1

1111

nnnn

n

n

T

ααα

ααα
ααα

L

MOMMM

L

L

L

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

0

0
1

0

1

1

0

M

M

M

M

k

n

k

k m

m

T

c

c
c

c

cTm 1−=Inverse DFT:

Evaluate polynomial mk-1xk-1 + ⋅⋅⋅ + m1x + m0
at n distinct roots of unity, 1, α, α2, α3, ⋅⋅⋅, αn-1

15-853 Page11

DFT Example
α = x is 7th root of unity in GF(23)/x3 + x + 1
(i.e., multiplicative group, which excludes additive inverse)
Recall α = “2”, α2 = “3”, … , α7 = 1 = “1”

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

6

2

32

65432

6

771

61

51

441

3331

2222221

1111111

OO

6

5

4

63

42

65432

1
1
1
1
1
1

1111111

α
α
α

αα
ααα

αααααα

T

Should be clear that c = T • (m0,m1,…,mk-1,0,…)T

is the same as evaluating p(x) = m0 + m1x + … + mk-1xk-1

at n points.
15-853 Page12

Decoding
Why is it hard?

Brute Force: try k+2s choose k + s possibilities and
solve for each.

4

15-853 Page13

Cyclic Codes
A linear code is cyclic if:

(c0, c1, …, cn-1) ∈ C ⇒ (cn-1, c0, …, cn-2) ∈ C

Both Hamming and Reed-Solomon codes are cyclic.
Note: we might have to reorder the columns to make

the code “cyclic”.

Motivation: They are more efficient to decode than
general codes.

15-853 Page14

Generator and Parity Check Matrices
Generator Matrix:
A k x n matrix G such that:

C = {m • G | m ∈ ∑k}
Made from stacking the basis vectors

Parity Check Matrix:
A (n – k) x n matrix H such that:

C = {v ∈ ∑n | H • vT = 0}
Codewords are the nullspace of H

These always exist for linear codes
H • GT = 0

15-853 Page15

Generator and Parity Check Polynomials
Generator Polynomial:
A degree (n-k) polynomial g such that:

C = {m • g | m ∈ m0 + m1x + … + mk-1xk-1}
such that g | xn – 1

Parity Check Polynomial:
A degree k polynomial h such that:

C = {v ∈ ∑n [x] | h • v = 0 (mod xn –1)}
such that h | xn - 1

These always exist for linear cyclic codes
h • g = xn - 1

15-853 Page16

Viewing g as a matrix
If g(x) = g0 + g1x + … + gn-k-1xn-k-1

We can put this generator in matrix form:

Write m = m0 + m1x +…+ mk-1xk-1 as (m0, m1, …, mk-1)
Then c = mG

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

−−

−−−−

−−

110

120

110

00

00
00

kn

knkn

kn

ggg

ggg
ggg

G

LLL

MOOM

LLL

LLL

5

15-853 Page17

g generates cyclic codes

Codes are linear combinations of the rows.
All but last row is clearly cyclic (based on next row)
Shift of last row is xkg mod (xn –1) = gn-k-1,0,…,g0,g1,…,gn-k-2
Consider h = h0 + h1x + … + hk-1xk-1 (gh = xn –1)

h0g + (h1x)g + … + (hk-2xk-2)g + (hk-1xk-1)g = xn - 1
xkg = -hk-1

-1(h0g + h1(xg) + … + hk-1(xk-1g)) mod (xn –1)
This is a linear combination of the rows.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

−
−−

−−−−

−−

gx

xg
g

ggg

ggg
ggg

G

k
kn

knkn

kn

1
110

120

110

00

00
00

M

LL

MOOM

LL

LL

15-853 Page18

Viewing h as a matrix
If h = h0 + h1x + … + hk-1xk-1

we can put this parity check poly. in matrix form:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

−

−−

−

00

00
00

011

021

011

LL

MNNM

LL

LL

hhh

hhh
hhh

H

k

kk

k

HcT = 0

15-853 Page19

Hamming Codes Revisited
The Hamming (7,4,3)2 code.

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1011000
0101100
0010110
0001011

G ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0011101
0111010
1110100

H

g = 1 + x + x3 h = x4 + x2 + x + 1

The columns are not identical to the previous
example Hamming code.

gh = x7 – 1, GHT = 0

15-853 Page20

Factors of xn -1
Intentionally left blank

6

15-853 Page21

Another way to write g
Let α be a generator of GF(pr).
Let n = pr - 1 (the size of the multiplicative group)
Then we can write a generator polynomial as

g(x) = (x-α)(x-α2) … (x - αn-k), h = (x- αn-k+1)…(x-αn)
Lemma: g | xn – 1, h | xn – 1, gh | xn – 1
(a | b means a divides b)
Proof:

– αn = 1 (because of the size of the group)
⇒ αn – 1 = 0
⇒ α root of xn – 1
⇒ (x - α) | xn -1

– similarly for α2, α3, …, αn

– therefore xn - 1 is divisible by (x - α)(x - α2) …
15-853 Page22

Back to Reed-Solomon
Consider a generator polynomial g ∈ GF(pr)[x], s.t. g | (xn – 1)
Recall that n – k = 2s (the degree of g is n-k-1, n-k coefficients)
Encode:

– m’ = m x2s (basically shift by 2s)
– b = m’ (mod g)
– c = m’ – b = (mk-1, …, m0, -b2s-1, …, -b0)
– Note that c is a cyclic code based on g

- m’ = qg + b
- c = m’ – b = qg

Parity check:
- h c = 0 ?

15-853 Page23

Example
Lets consider the (7,3,5)8 Reed-Solomon code.
We use GF(23)/x3 + x + 1

10011α7

7101x2 + 1α6

6111x2 + x + 1α5

5110x2 + xα4

4011x + 1α3

3100x2α2

2010xα

15-853 Page24

Example RS (7,3,5)8

g = (x - α)(x - α2)(x - α3)(x - α4)
= x4 + α3x3 + x2 + αx + α3

h = (x - α5)(x - α6)(x - α7)
= x3 + a3x3 + a2x + a4

gh = x7 - 1
Consider the message: 110 000 110

m = (α4, 0, α4) = α4x2 + α4

m’ = x4m = α4x6 + α4x4

= (α4 x2 + x + α3)g + (α3x3 + α6x + α6)
c = (α4, 0, α4, α3, 0, α6, α6)

= 110 000 110 011 000 101 101

001α7

101α6

111α5

110α4

011α3

100α2

010α

ch = 0 (mod x7 –1)

n = 7, k = 3, n-k = 2s = 4, d = 2s+1 = 5

7

15-853 Page25

A useful theorem
Theorem: For any β, if g(β) = 0 then β2sm(β) = b(β)
Proof:

x2sm(x) = m’(x) = g(x)q(x) + b(x)
β2sm(β) = g(β)q(β) + b(β) = b(β)

Corollary: β2sm(β) = b(β) for β ∈ {α, α2, α3,…, α2s=n-k}
Proof:

{α, α2, …, α2s} are the roots of g by definition.

15-853 Page26

Fixing errors
Theorem: Any k symbols from c can reconstruct c

and hence m
Proof:
We can write 2s equations involving m (cn-1, …, c2s)

and b (c2s-1, …, c0). These are
α2s m(α) = b(α)
α4s m(α2) = b(α2)
…
α2s(2s) m(α2s) = b(α2s)

We have at most 2s unknowns, so we can solve for
them. (I’m skipping showing that the equations
are linearly independent).

15-853 Page27

Efficient Decoding
I don’t plan to go into the Reed-Solomon decoding

algorithm, other than to mention the steps.

Syndrome
Calculator

Error
Polynomial

Berlekamp
Massy

Error
Locations

Chien
Search

Error
Magnitudes

Forney
Algorithm

Error
Correctorc m

This is the hard part. CD players
use this algorithm.
(Can also use Euclid’s algorithm.)

