15-853:Algorithms in the Real World

Error Correcting Codes II

- Cyclic Codes
- Reed-Solomon Codes

Polynomial-Based Code

A ($n, k, 2 s+1$) code:

Can detect $2 s$ errors
Can correct s errors
Generally can correct α erasures and β errors if
$\alpha+2 \beta \leq 2 s$

Viewing Messages as Polynomials

A (n, k, n-k+1) code:
Consider the polynomial of degree $k-1$

$$
p(x)=a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}
$$

Message: $\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)$
Codeword: ($p(1), p(2), \ldots, p(n)$)
To keep the $p(i)$ fixed size, we use $a_{i} \in G F\left(p^{r}\right)$
To make the i distinct, $n<p^{r}$
Unisolvence Theorem: Any subset of size k of ($p(1)$, $p(2), \ldots, p(n)$) is enough to (uniquely) reconstruct $p(x)$ using polynomial interpolation, e.g., LaGrange's Formula.

Correcting Errors

Correcting s errors:

1. Find $\mathrm{k}+\mathrm{s}$ symbols that agree on a polynomial $\mathrm{p}(\mathrm{x})$. These must exist since originally $k+2 s$ symbols agreed and only s are in error
2. There are no $k+s$ symbols that agree on the wrong polynomial $p^{\prime}(x)$

- Any subset of k symbols will define $p^{\prime}(x)$
- Since at most s out of the $k+s$ symbols are in error, $p^{\prime}(x)=p(x)$

A Systematic Code

Systematic polynomial-based code
$p(x)=a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$
Message: $\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)$
Codeword: ($\left.a_{k-1}, \ldots, a_{1}, a_{0}, p(1), p(2), \ldots, p(2 s)\right)$
This has the advantage that if we know there are no errors, it is trivial to decode.
The version of RS used in practice uses something slightly different than $p(1), p(2)$,
This will allow us to use the "Parity Check" ideas from linear codes (i.e., $\mathrm{Hc}^{\top}=0$?) to quickly test for errors.

Applications of Reed-Solomon Codes

- Storage: CDs, DVDs, "hard drives",
- Wireless: Cell phones, wireless links
- Sateline and Space: TV, Mars rover, ..
- Digital Television: DVD, MPEG2 layover
- High Speed Modems: ADSL, DSL, .

Good at handling burst errors.
Other codes are better for random errors.

- e.g., Gallager codes, Turbo codes

Reed-Solomon Codes in the Real World

$(204,188,17)_{256}$: ITU J.83(A)
$(128,122,7)_{256}$: ITU J.83(B)
$(255,223,33)$ 256 : Common in Practice

- Note that they are all byte based
(i.e., symbols are from $G F\left(2^{8}\right)$).

Decoding rate on 1.8 GHz Pentium 4:

- $(255,251)=89 \mathrm{Mbps}$
- $(255,223)=18 \mathrm{Mbps}$

Dozens of companies sell hardware cores that operate 10x faster (or more)

- $(204,188)=320 \mathrm{Mbps}$ (Altera decoder)

RS and "burst" errors

Let's compare to Hamming Codes (which are "optimal").

	code bits	check bits
RS (255, 253, 3) 256	2040	16
Hamming (2 $\left.{ }^{11}-1, \mathbf{2}^{11}-11-1,3\right)_{2}$	2047	11

They can both correct 1 error, but not 2 random errors.

- The Hamming code does this with fewer check bits

However, RS can fix 8 contiguous bit errors in one byte

- Much better than lower bound for 8 arbitrary errors

$$
\log \left(1+\binom{n}{1}+\cdots+\binom{n}{8}\right)>8 \log (n-7) \approx 88 \text { check bits }
$$

Galois Field

$G F\left(2^{3}\right)$ with irreducible polynomial: $x^{3}+x+1$ $\alpha=x$ is a generator

α	x	010	$\mathbf{2}$
α^{2}	x^{2}	100	$\mathbf{3}$
α^{3}	$x+1$	011	$\mathbf{4}$
α^{4}	$x^{2}+x$	110	$\mathbf{5}$
α^{5}	$x^{2}+x+1$	111	$\mathbf{6}$
α^{6}	$x^{2}+1$	101	$\mathbf{7}$
α^{7}	1	001	$\mathbf{1}$

Will use this as an example.

Discrete Fourier Transform (DFT)

Another View of polynomial-based codes
α is a primitive $\mathrm{n}^{\text {th }}$ root of unity $\left(\alpha^{n}=1\right)$ - a generator
$T=\left(\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^{2} & \cdots & \alpha^{n-1} \\ 1 & \alpha^{2} & \alpha^{4} & \cdots & \alpha^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{n-1} & \alpha^{2(n-1)} & \cdots & \alpha^{(n-1)(n-1)}\end{array}\right) \quad\left(\begin{array}{c}c_{0} \\ \vdots \\ c_{k-1} \\ c_{k} \\ \vdots \\ c_{n-1}\end{array}\right)=T \cdot\left(\begin{array}{c}m_{0} \\ \vdots \\ m_{k-1} \\ 0 \\ \vdots \\ 0\end{array}\right)$
Evaluate polynomial $m_{k-1} x^{k-1}+\ldots+m_{1} x+m_{0}$ at n distinct roots of unity, $1, \alpha, \alpha^{2}, \alpha^{3}, \cdots, \alpha^{n-1}$
Inverse DFT: $m=T^{-1} c$

DFT Example

$\alpha=x$ is $7^{\text {th }}$ root of unity in $\mathrm{GF}\left(2^{3}\right) / x^{3}+x+1$
(i.e., multiplicative group, which excludes additive inverse)

Recall $\alpha=" 2 ", \alpha^{2}=" 3 ", \ldots, \alpha^{7}=1=" 1 "$
$T=\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 \\ 1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} \\ 1 & \alpha^{6} \\ 1 & \alpha^{2} & \alpha^{4} & \alpha^{6} & & \\ 1 & \alpha^{3} & \alpha^{6} & & \\ 1 & \alpha^{4} & & \ddots & & \\ 1 & \alpha^{5} & & & & \\ 1 & \alpha^{6} & & & & \end{array}\right)=\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2^{2} & 2^{3} & 2^{4} & 2^{5} \\ 2^{6} \\ 1 & 3 & 3^{2} & 3^{3} & & \\ 1 & 4 & 4^{2} & & & \\ 1 & 5 & & \ddots & & \\ 1 & 6 & & & & \\ 1 & 7 & & & & 7^{6}\end{array}\right)$

Should be clear that $c=T \bullet\left(m_{0}, m_{1}, \ldots, m_{k-1}, 0, \ldots\right)^{\top}$
is the same as evaluating $p(x)=m_{0}+m_{1} x+\ldots+m_{k-1} x^{k-1}$
at n points.

Decoding

Why is it hard?
Brute Force: try $k+2 s$ choose $k+s$ possibilities and solve for each.

Cyclic Codes

A linear code is cyclic if:
$\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C \Rightarrow\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$

Both Hamming and Reed-Solomon codes are cyclic. Note: we might have to reorder the columns to make the code "cyclic".

Motivation: They are more efficient to decode than general codes.

Generator and Parity Check Polynomials

Generator Polynomial:

A degree ($n-k$) polynomial g such that:
$C=\left\{m \bullet g \mid m \in m_{0}+m_{1} x+\ldots+m_{k-1} x^{k-1}\right\}$
such that $g \mid x^{n}-1$
Parity Check Polynomial:
A degree k polynomial h such that:
$c=\left\{v \in \sum^{n}[x] \mid h \bullet v=0\left(\bmod x^{n}-1\right)\right\}$
such that $h \mid x^{n}-1$

These always exist for linear cyclic codes
$h \cdot g=x^{n}-1$

Generator and Parity Check Matrices

Generator Matrix:

A $k \times n$ matrix G such that:

$$
C=\left\{m \bullet G \mid m \in \sum^{k}\right\}
$$

Made from stacking the basis vectors
Parity Check Matrix:
A ($n-k) \times n$ matrix H such that:

$$
C=\left\{v \in \Sigma^{n} \mid H \bullet v^{\top}=0\right\}
$$

Codewords are the nullspace of H
These always exist for linear codes
$H \bullet G^{\top}=0$

Viewing g as a matrix

If $g(x)=g_{0}+g_{1} x+\ldots+g_{n-k-1} x^{n-k-1}$
We can put this generator in matrix form:
$G=\left(\begin{array}{cccccccc}g_{0} & g_{1} & \cdots & \cdots & g_{n-k-1} & 0 & \cdots & 0 \\ 0 & g_{0} & \cdots & \cdots & g_{n-k-2} & g_{n-k-1} & \cdots & 0 \\ \vdots & & \ddots & & & & \ddots & \vdots \\ 0 & 0 & \cdots & g_{0} & g_{1} & \cdots & \cdots & g_{n-k-1}\end{array}\right)$

Write $m=m_{0}+m_{1} x+\ldots+m_{k-1} x^{k-1}$ as $\left(m_{0}, m_{1}, \ldots, m_{k-1}\right)$
Then $c=m G$

\[

\]

Codes are linear combinations of the rows.
All but last row is clearly cyclic (based on next row)
Shift of last row is $x^{k} g \bmod \left(x^{n}-1\right)=g_{n-k-1}, 0, \ldots, g_{0}, g_{1}, \ldots, g_{n-k-2}$
Consider $h=h_{0}+h_{1} x+\ldots+h_{k-1} x^{k-1} \quad\left(g h=x^{n}-1\right)$
$h_{0} g+\left(h_{1} x\right) g+\ldots+\left(h_{k-2} x^{k-2}\right) g+\left(h_{k-1} x^{k-1}\right) g=x^{n}-1$
$x^{k} g=-h_{k-1}^{-1}\left(h_{0} g+h_{1}(x g)+\ldots+h_{k-1}\left(x^{k-1} g\right)\right) \bmod \left(x^{n}-1\right)$
This is a linear combination of the rows.

Hamming Codes Revisited

The Hamming $(7,4,3)_{2}$ code.

Factors of $x^{n}-1$

Intentionally left blank

$$
\begin{gathered}
g=1+x+x^{3} \\
G=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right) \quad H=\left(\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right) \\
g h=x^{7}-1, \quad G H^{\top}=0
\end{gathered}
$$

The columns are not identical to the previous example Hamming code.

Another way to write g

Let α be a generator of GF(pr).

Let $n=p^{r}-1$ (the size of the multiplicative group)
Then we can write a generator polynomial as
$g(x)=(x-\alpha)\left(x-\alpha^{2}\right) \ldots\left(x-\alpha^{n-k}\right), h=\left(x-\alpha^{n-k+1}\right) \ldots\left(x-\alpha^{n}\right)$
Lemma: $g\left|x^{n}-1, h\right| x^{n}-1, g h \mid x^{n}-1$

($a \mid b$ means a divides b)

Proof:

- $\alpha^{n}=1 \quad$ (because of the size of the group) $\Rightarrow \alpha^{n}-1=0$
$\Rightarrow \alpha$ root of $x^{n}-1$
$\Rightarrow(x-\alpha) \mid x^{n}-1$
- similarly for $\alpha^{2}, \alpha^{3}, \ldots, \alpha^{n}$
- therefore $x^{n}-1$ is divisible by $(x-\alpha)\left(x-\alpha^{2}\right)$...

Example

Lets consider the $(7,3,5)_{8}$ Reed-Solomon code.
We use $G F\left(2^{3}\right) / x^{3}+x+1$

α	x	010	$\mathbf{2}$
α^{2}	x^{2}	100	$\mathbf{3}$
α^{3}	$x+1$	011	$\mathbf{4}$
α^{4}	$x^{2}+x$	110	$\mathbf{5}$
α^{5}	$x^{2}+x+1$	111	$\mathbf{6}$
α^{6}	$x^{2}+1$	101	$\mathbf{7}$
α^{7}	1	001	$\mathbf{1}$

Back to Reed-Solomon

Consider a generator polynomial $g \in G F\left(p^{r}\right)[x]$, s.t. $g \mid\left(x^{n}-1\right)$
Recall that $n-k=2 s$ (the degree of g is $n-k-1, n-k$ coefficients)
Encode:

- $m^{\prime}=m x^{2 s} \quad$ (basically shift by $2 s$)
- $b=m^{\prime}(\bmod g)$
- $c=m^{\prime}-b=\left(m_{k-1}, \ldots, m_{0},-b_{2 s-1}, \ldots,-b_{0}\right)$
- Note that c is a cyclic code based on g
$-m^{\prime}=q 9+b$
- $c=m^{\prime}-b=99$

Parity check:

- $\mathrm{hc}=0$?

Example RS $(7,3,5)_{8}$

$n=7, k=3, n-k=2 s=4, d=2 s+1=5$
$g=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right)$

$$
=x^{4}+\alpha^{3} x^{3}+x^{2}+\alpha x+\alpha^{3}
$$

$h=\left(x-\alpha^{5}\right)\left(x-\alpha^{6}\right)\left(x-\alpha^{7}\right)$
$=x^{3}+a^{3} x^{3}+a^{2} x+a^{4}$
$g h=x^{7}-1$
Consider the message: 110000110

$$
\begin{aligned}
m & =\left(\alpha^{4}, 0, \alpha^{4}\right)=\alpha^{4} x^{2}+\alpha^{4} \\
m^{\prime} & =x^{4} m=\alpha^{4} x^{6}+\alpha^{4} x^{4} 001 \\
& =\left(\alpha^{4} x^{2}+x+\alpha^{3}\right) g+\left(\alpha^{3} x^{3}+\alpha^{6} x+\alpha^{6}\right) \\
c & =\left(\alpha^{4}, 0, \alpha^{4}, \alpha^{3}, 0, \alpha^{6}, \alpha^{6}\right) \\
& =110000110011000101101 \quad c h=0\left(\bmod x^{7}-1\right)
\end{aligned}
$$

A useful theorem

Theorem: For any β, if $g(\beta)=0$ then $\beta^{2 s} m(\beta)=b(\beta)$

Proof:

$x^{2 s} m(x)=m^{\prime}(x)=g(x) q(x)+b(x)$
$\beta^{2 s} m(\beta)=g(\beta) q(\beta)+b(\beta)=b(\beta)$
Corollary: $\beta^{25} m(\beta)=b(\beta)$ for $\beta \in\left\{\alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{2 s=n-k}\right\}$
Proof:
$\left\{\alpha, \alpha^{2}, \ldots, \alpha^{2 s}\right\}$ are the roots of g by definition.

Fixing errors

Theorem: Any k symbols from c can reconstruct c and hence m

Proof:

We can write $2 s$ equations involving $m\left(c_{n-1}, \ldots, c_{2 s}\right)$ and $b\left(c_{2 s-1}, \ldots, c_{0}\right)$. These are

$$
\begin{aligned}
& \alpha^{2 s} m(\alpha)=b(\alpha) \\
& \alpha^{4 s} m\left(\alpha^{2}\right)=b\left(\alpha^{2}\right)
\end{aligned}
$$

$$
\ldots
$$

$$
\alpha^{2 s(2 s)} m\left(\alpha^{2 s}\right)=b\left(\alpha^{2 s}\right)
$$

We have at most $2 s$ unknowns, so we can solve for them. (I'm skipping showing that the equations are linearly independent)

