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15-853:Algorithms in the Real World

Error Correcting Codes II
– Cyclic Codes
– Reed-Solomon Codes
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Viewing Messages as Polynomials
A (n, k, n-k+1) code:
Consider the polynomial of degree k-1

p(x) = ak-1 xk-1 + L + a1 x + a0
Message:  (ak-1, …, a1, a0) 
Codeword: (p(1), p(2), …, p(n))

To keep the p(i) fixed size, we use ai ∈ GF(pr)
To make the i distinct,  n < pr

Unisolvence Theorem:  Any subset of size k of (p(1), 
p(2), …, p(n)) is enough to (uniquely) reconstruct 
p(x) using polynomial interpolation, e.g., LaGrange’s 
Formula.
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Polynomial-Based Code
A (n, k, 2s +1) code:

k 2s

Can detect 2s errors
Can correct s errors
Generally can correct α erasures and β errors if 

α + 2β ≤ 2s

n
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Correcting Errors
Correcting s errors:
1. Find k + s symbols that agree on a polynomial p(x).

These must exist since originally k + 2s symbols 
agreed and only s are in error

2. There are no k + s symbols that agree on the 
wrong polynomial p’(x)
- Any subset of k symbols will define p’(x)
- Since at most s out of the k+s symbols are in 

error, p’(x) = p(x)



2

15-853 Page5

A Systematic Code
Systematic polynomial-based code 

p(x) = ak-1 xk-1 + L + a1 x + a0

Message:  (ak-1, …, a1, a0) 
Codeword: (ak-1, …, a1, a0, p(1), p(2), …, p(2s))

This has the advantage that if we know there are no 
errors, it is trivial to decode.

The version of RS used in practice uses something 
slightly different than p(1), p(2), …

This will allow us to use the “Parity Check” ideas 
from linear codes (i.e., HcT = 0?) to quickly test 
for errors.
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Reed-Solomon Codes in the Real World

(204,188,17)256  : ITU J.83(A)2

(128,122,7)256 : ITU J.83(B)
(255,223,33)256 : Common in Practice

– Note that they are all byte based 
(i.e., symbols are from GF(28)).

Decoding rate on 1.8GHz Pentium 4:
– (255,251) = 89Mbps
– (255,223) = 18Mbps

Dozens of companies sell hardware cores that 
operate 10x faster (or more)
– (204,188) = 320Mbps (Altera decoder)
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Applications of Reed-Solomon Codes
• Storage: CDs, DVDs, “hard drives”,
• Wireless: Cell phones, wireless links
• Sateline and Space: TV, Mars rover, …
• Digital Television: DVD, MPEG2 layover
• High Speed Modems: ADSL, DSL, ..

Good at handling burst errors.
Other codes are better for random errors.

– e.g., Gallager codes, Turbo codes
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RS and “burst” errors

They can both correct 1 error, but not 2 random errors.
– The Hamming code does this with fewer check bits

However, RS can fix 8 contiguous bit errors in one byte
– Much better than lower bound for 8 arbitrary errors
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112047Hamming (211-1, 211-11-1, 3)2

162040RS (255, 253, 3)256

Let’s compare to Hamming Codes (which are “optimal”).
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Galois Field
GF(23) with irreducible polynomial: x3 + x + 1
α = x is a generator

10011α7

7101x2 + 1α6

6111x2 + x + 1α5

5110x2 + xα4

4011x + 1α3

3100x2α2

2010xα

Will use this as an example.
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Discrete Fourier Transform (DFT)
Another View of polynomial-based codes
α is a primitive nth root of unity (αn = 1) – a generator
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cTm 1−=Inverse DFT:

Evaluate polynomial mk-1xk-1 + ⋅⋅⋅ + m1x + m0
at n distinct roots of unity, 1, α, α2, α3, ⋅⋅⋅, αn-1
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DFT Example
α = x is 7th root of unity in GF(23)/x3 + x + 1
(i.e., multiplicative group, which excludes additive inverse)
Recall α = “2”, α2 = “3”, … , α7 = 1 = “1”
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Should be clear that c = T • (m0,m1,…,mk-1,0,…)T

is the same as evaluating p(x) = m0 + m1x + … + mk-1xk-1

at n points.
15-853 Page12

Decoding
Why is it hard?

Brute Force: try  k+2s choose k + s possibilities and 
solve for each.
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Cyclic Codes
A linear code is cyclic if:

(c0, c1, …, cn-1) ∈ C ⇒ (cn-1, c0, …, cn-2) ∈ C

Both Hamming and Reed-Solomon codes are cyclic.
Note: we might have to reorder the columns to make 

the code “cyclic”.

Motivation: They are more efficient to decode than 
general codes.
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Generator and Parity Check Matrices
Generator Matrix:
A k x n matrix G such that: 

C = {m • G | m ∈ ∑k}
Made from stacking the basis vectors

Parity Check Matrix:
A (n – k) x n matrix H such that:  

C = {v ∈ ∑n | H • vT = 0}
Codewords are the nullspace of H

These always exist for linear codes
H • GT = 0
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Generator and Parity Check Polynomials
Generator Polynomial:
A degree (n-k) polynomial g such that: 

C = {m • g | m ∈ m0 + m1x + … + mk-1xk-1}
such that g | xn – 1    

Parity Check Polynomial:
A degree k polynomial h such that:  

C = {v ∈ ∑n [x] | h • v = 0 (mod xn –1)}
such that h | xn - 1

These always exist for linear cyclic codes
h • g = xn - 1
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Viewing g as a matrix
If g(x) = g0 + g1x + … + gn-k-1xn-k-1

We can put this generator in matrix form:

Write m = m0 + m1x +…+ mk-1xk-1 as (m0, m1, …, mk-1)
Then c = mG
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g generates cyclic codes

Codes are linear combinations of the rows.
All but last row is clearly cyclic (based on next row)
Shift of last row is xkg mod (xn –1) = gn-k-1,0,…,g0,g1,…,gn-k-2
Consider h = h0 + h1x + … + hk-1xk-1 (gh = xn –1)

h0g + (h1x)g + … + (hk-2xk-2)g + (hk-1xk-1)g = xn - 1
xkg = -hk-1

-1(h0g + h1(xg) + … + hk-1(xk-1g)) mod (xn –1)
This is a linear combination of the rows.
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Viewing h as a matrix
If h = h0 + h1x + … + hk-1xk-1

we can put this parity check poly. in matrix form:
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HcT = 0
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Hamming Codes Revisited
The Hamming (7,4,3)2 code.
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H

g = 1 + x + x3 h = x4 + x2 + x + 1

The columns are not identical to the previous 
example Hamming code.

gh = x7 – 1,   GHT = 0  
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Factors of xn -1
Intentionally left blank
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Another way to write g
Let α be a generator of GF(pr).
Let n = pr - 1   (the size of the multiplicative group)
Then we can write a generator polynomial as

g(x) = (x-α)(x-α2) … (x - αn-k),  h = (x- αn-k+1)…(x-αn)
Lemma: g | xn – 1,  h | xn – 1,  gh | xn – 1
(a | b means a divides b)
Proof:

– αn = 1     (because of the size of the group) 
⇒ αn – 1 = 0 
⇒ α root of xn – 1 
⇒ (x - α) | xn -1

– similarly for α2, α3, …, αn

– therefore xn - 1 is divisible by (x - α)(x - α2) …
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Back to Reed-Solomon
Consider a generator polynomial g ∈ GF(pr)[x], s.t. g | (xn – 1) 
Recall that n – k = 2s   (the degree of g is n-k-1, n-k coefficients)
Encode:

– m’ = m x2s (basically shift by 2s)
– b = m’ (mod g)
– c = m’ – b   = (mk-1, …, m0, -b2s-1, …, -b0)
– Note that c is a cyclic code based on g

- m’ = qg + b        
- c = m’ – b = qg

Parity check:
- h c = 0 ? 
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Example
Lets consider the (7,3,5)8 Reed-Solomon code.
We use GF(23)/x3 + x + 1

10011α7

7101x2 + 1α6

6111x2 + x + 1α5

5110x2 + xα4

4011x + 1α3

3100x2α2

2010xα
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Example RS (7,3,5)8

g = (x - α)(x - α2)(x - α3)(x - α4) 
= x4 + α3x3 + x2 + αx + α3

h = (x - α5)(x - α6)(x - α7)
= x3 + a3x3 + a2x + a4

gh = x7 - 1
Consider the message: 110 000 110

m = (α4, 0, α4) = α4x2 + α4

m’ = x4m = α4x6 + α4x4

= (α4 x2 + x + α3)g + (α3x3 + α6x + α6)
c = (α4, 0, α4, α3, 0, α6, α6)

= 110 000 110 011 000 101 101

001α7

101α6

111α5

110α4

011α3

100α2

010α

ch = 0 (mod x7 –1)

n = 7, k = 3, n-k = 2s = 4, d = 2s+1 = 5
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A useful theorem
Theorem: For any β, if g(β) = 0 then β2sm(β) = b(β)
Proof: 

x2sm(x) = m’(x) = g(x)q(x) + b(x)
β2sm(β) = g(β)q(β) + b(β) = b(β)

Corollary:  β2sm(β) = b(β)  for β ∈ {α, α2, α3,…, α2s=n-k}
Proof:

{α, α2, …, α2s} are the roots of g by definition.
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Fixing errors
Theorem: Any k symbols from c can reconstruct c 

and hence m
Proof:
We can write 2s equations involving m (cn-1, …, c2s) 

and b (c2s-1, …, c0).   These are
α2s m(α) = b(α)
α4s m(α2) = b(α2)
…
α2s(2s) m(α2s) = b(α2s)

We have at most 2s unknowns, so we can solve for 
them.    (I’m skipping showing that the equations 
are linearly independent).
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Efficient Decoding
I don’t plan to go into the Reed-Solomon decoding 

algorithm, other than to mention the steps.

Syndrome
Calculator

Error
Polynomial

Berlekamp
Massy

Error
Locations

Chien
Search

Error 
Magnitudes

Forney
Algorithm

Error
Correctorc m

This is the hard part.  CD players 
use this algorithm.
(Can also use Euclid’s algorithm.)


