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15-853:Algorithms in the Real World

Computational Biology II
– Sequence Alignment
– Database searches
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Extending LCS for Biology
The LCS/Edit distance problem is not a “practical”

model for comparing DNA or proteins.

Why?

Good example of the simple model failing.
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Extending LCS for Biology
The LCS/Edit distance problem is not a “practical”

model for comparing DNA or proteins.
– Some amino-acids are “closer” to each others 

than others (e.g. more likely to mutate among 
each other, or closer in structural form).

– Some amino-acids have more “information” than 
others and should contribute more.

– The cost of a deletion  (insertion) of length n 
should not be counted as n times the cost of a 
deletion (insertion) of length 1.

– Biologist often care about finding “local”
alignments instead of a global alignment.

15-853 Page 4

What we will talk about today
Extensions
• Sequence Alignment: a generalization of LCS to 

account for the closeness of different elements
• Gap Models: More sophisticated models for 

accounting for the cost of adjacent insertions or 
deletions

• Local Alignment: Finding parts of one sequence in 
parts of another sequence.

Applications
• FASTA and BLAST: The most common sequence 

matching tools used in Molecular Biology.



2

15-853 Page 5

Sequence Alignment
A generalization of LCS / Edit Distance
Extension: A’ is an extension of A if it is A with 

spaces _ added.
Alignment: An alignment of A and B is a pair of 

extensions A’ and B’ such that |A’| = |B’|
Example:

A  = a b a c d a 
B  = a a d c d d c

A’ = _ a b a c d a _
B’ = a a d _ c d d c
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The Score (Weight)
Σ+ = alphabet including a “space” character
Scoring Function: σ(x,y), x,y ∈ Σ+

Alignment score: 

Optimal alignment: An alignment (A’, B’) of (A, B) 
such that W(A’,B’) is maximized.   We will denote 
this optimized score as W(A,B).

Same as |LCS| when:
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Example
A = a b a c d a c
B = c a d c d d c

Alignment 1
_ a b a c d a c
|     | |   |

c a d _ c d d c

Alignment 2
a b a _ c d a c

|   | |   |
_ c a d c d d c

-1-1-1-1-1_

-12000d

-10210c

-10120b

-10002a

_dcba

σ(x,y)

Which is the better
alignment?
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Scores vs. Distances
Maximizing vs. Minimizing.
Scores:

– Can be positive, zero, or negative.  We try to 
maximize scores.

Distances:
– Must be non-negative, and typically we assume 

they obey the triangle inequality (i.e. they are a 
metric).   We try to minimize distances.

Scores are more flexible, but distances have better 
mathematical properties.   The local alignment 
method we will use requires scores.
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σ(x,y) for Protein Matching
How is the function/matrix derived?
• Identity: entries are 0 or 1, either same or not
• Genetic code: number of DNA changes.  

Remember that each amino acid is coded with a 3 
bp codon.  Changes can be between 0 and 3

• Chemical Similarity: size, shape, or charge
• Experimental: see how often mutations occur from 

one amino acid to another in real data.   
This is what is used in practice.
– PAM (or dayhoff) Matrix
– BLOSUM (BLOcks SUbstitution Matrix)
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BLOSUM62 Matrix
A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y V  B  Z  X  *

A  4 -1 -2 -2  0 -1 -1  0 -2 -1 -1 -1 -1 -2 -1  1  0 -3 -2  0 -2 -1  0 -4
R -1  5 0 -2 -3  1  0 -2  0 -3 -2  2 -1 -3 -2 -1 -1 -3 -2 -3 -1  0 -1 -4
N -2  0  6 1 -3  0  0  0  1 -3 -3  0 -2 -3 -2  1  0 -4 -2 -3  3  0 -1 -4
D -2 -2  1  6 -3  0  2 -1 -1 -3 -4 -1 -3 -3 -1  0 -1 -4 -3 -3  4  1 -1 -4
C  0 -3 -3 -3  9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
Q -1  1  0  0 -3  5 2 -2  0 -3 -2  1  0 -3 -1  0 -1 -2 -1 -2  0  3 -1 -4
E -1  0  0  2 -4  2  5 -2  0 -3 -3  1 -2 -3 -1  0 -1 -3 -2 -2  1  4 -1 -4
G  0 -2  0 -1 -3 -2 -2  6 -2 -4 -4 -2 -3 -3 -2  0 -2 -2 -3 -3 -1 -2 -1 -4
H -2  0  1 -1 -3  0  0 -2  8 -3 -3 -1 -2 -1 -2 -1 -2 -2  2 -3  0  0 -1 -4
I -1 -3 -3 -3 -1 -3 -3 -4 -3  4 2 -3  1  0 -3 -2 -1 -3 -1  3 -3 -3 -1 -4
L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4 -2  2  0 -3 -2 -1 -2 -1  1 -4 -3 -1 -4
K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5 -1 -3 -1  0 -1 -3 -2 -2  0  1 -1 -4
M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5 0 -2 -1 -1 -1 -1  1 -3 -1 -1 -4
F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6 -4 -2 -2  1  3 -1 -3 -3 -1 -4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7 -1 -1 -4 -3 -2 -2 -1 -2 -4
S  1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4 1 -3 -2 -2  0  0  0 -4
T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5 -2 -2  0 -1 -1  0 -4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11 2 -3 -4 -3 -2 -4
Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7 -1 -3 -2 -1 -4
V  0 -3 -3 -3 -1 -2 -2 -3 -3  3  1 -2  1 -1 -2 -2  0 -3 -1  4 -3 -2 -1 -4
B -2 -1  3  4 -3  0  1 -1  0 -3 -4  0 -3 -3 -2  0 -1 -4 -3 -3  4 1 -1 -4
Z -1  0  0  1 -3  3  4 -2  0 -3 -3  1 -1 -3 -1  0 -1 -3 -2 -2  1  4 -1 -4
X  0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2  0  0 -2 -1 -1 -1 -1 -1 -4
* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4  1
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Optimal Alignment Recursive Solution

min(1 + D(A:a, B), 1 + D(A, B:b)) =D(A:a, B:b)
D(A, B)=D(A:x, B:x)
|B|=D(ε, B)
|A|=D(A, ε)

Edit Distance, from last lecture:

max(σ(a, b) + W(A, B),
σ(_, b) + W(A:a, B),
σ(a, _) + W(A, B:b))

=W(A:a, B:b)
σ(a, _) + W(A, ε)=W(A:a, ε)
σ(_, b) + W(ε, B)=W(ε, B:b)
0=W(ε, ε)

The optimal alignment problem:
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Dynamic programming
for i = 1 to n

M[i,1] = σ(A[i], _ )
for j = 1 to m

M[1,j] = σ(_ , B[i]);

for i = 1 to n
for j = 1 to m
M[i,j] = max3(σ(A[i],B[j]) + M[i-1,j-1],

σ(A[i], _  ) + M[i-1,j], 
σ( _  ,B[j]) + M[i  ,j-1]);
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Example

_ t c a t _ _
| | | |

a t c a c a c

456412-1-4t

23452-10-3a

-101230-1-2c

-4-3-2-101-1-1t

-7-6-5-4-3-2-10

cacacta

A

B

-1-1-1-1_

-1210c

-112-1t

-10-12a

_cta

c(x,y)

3 blanks inserted  = -3
1 t-c match           =  1
3 perfect matches =  6

TOTAL = 4

15-853 Page 15

Optimizations
Space efficiency:   

The divide-and-conquer technique still works.
The Ukkonen/Myers algorithm:

A variant works, but O(dn) time is no longer 
guaranteed since the distance from the diagonal 
cannot in general be directly bounded by the score.

Bounds, however, can be given in terms of relative 
weights of matrix elements and the technique 
works reasonably well in practice.

Real Problem: solves global-alignment problem when 
biologists care about the local-alignment problem.
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Gap Penalties
Problem with technique so far: Longer indels

(insertions or deletions) should not be weighted as 
the sum of single indels.

Gap: indel of k characters is a gap of length k
Gap score: let xk be the score of a gap of length k

What is a good gap scoring function?
Can the dynamic programming approach be 

extended?
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Possible Gap Scores

k

-xk

k

-xk

“affine gap model” “concave gap model”

Note that in the maximization problem, gap scores
should be negative (α and β are negative).

xk = α + β k
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Waterman-Smith-Beyer Algorithm
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Every cell in the matrix has to calculate its score 
based on all previous elements in its row and column.

Time = O(nm2 + n2m)
This is not very practical

k
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Affine Gap Model: xk = α + β k

Constant time per cell.   
Total time: O(nm)

W W

E

W

E

F

W

F

+ β

+ α + β

+ β

+ α + β

+ σ(ai,bj)

E = optimal alignment
of form A, B:_

F = optimal alignment
of form A:_, B

W = optimal alignment

Algorithm: (Gotoh ’82) for each cell of the n £ m 
matrix keep three values, E, F and W.
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Affine Gap Model: xk = α + β k
Can be written as:
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Other Gap Models

TimeFunction Form

O(lnm)l-segmentsPiecewise linear
O(nmlogn)Concave Downwards
O(nm)?xk = α + β log(k)Logarithmic
O(nm)xk = α + β kAffine
O(nm2 + n2m)General
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Local Alignment
In practice we often need to match subregions of A 

with subregions of B.
e.g. A

B
A

B

A

B
We want to find the best matches with the same 

distance metric as before used within each match.
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Local Alignment
Algorithm: (Smith and Waterman ’81)
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With Gap Scores Without Gap Scores

Only real difference from before is the 0 in the max.
We might want global or local maximums of Wij
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Example

The algorithm finds 3 “local maximums” corresponding 
to 3 hits.   Although the three matches shown are 
fully on diagonals, this is not always the case.

56753410t

34563120a

21234100c

10101200t

00000000

cacacta

A

B

-1-1-1-1_

-1210c

-112-1t

-10-12a

_cta

c(x,y)
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Database Search
Basic model:
1. User selects a database and submits a source 

sequence S, typically via the web (or email)
2. The remote computer compares S to each target 

T in its database.  The runtime depends on the 
length of S and the size of the database.

3. The remote computer returns a ranked list of the 
“best” hits found in the database, usually based 
on local alignment.

Example of BLAST
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Algorithms in the “real world”
Dynamic programming is too expensive even with 

optimizations.
Heuristics are used that approximate the dynamic 

programming solution.   Dynamic program is often 
used at end to give final score.

Main two programs in practice:
– FASTA (1985)
– BLAST (Basic Local Alignment Search Tool) 

(1990)
Lipman involed in both, Myers involved in BLAST.
There are many variants of both.
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FASTA and BLAST
The idea of both algorithms is to find approximate 

matches by composing smaller exact matches.

Both algorithms loop over each string T in the 
database and find the “heuristically” best match 
for the search string along with its score 
(assuming the score is above some threshold).    

The matches across the T in the database are 
returned in rank order (highest-score first).
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FASTA: Step 1

Create a table that maps each k-tuple value found to 
all the start positions with that value

S

k

Break source S into k-tuples (adjacent sequence of k 
characters) using a “sliding window”.   Typically 
k=1 or 2 for proteins, and k=4-6 for DNA.
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FASTA: Step 2
Linearly search T for each k-tuple belonging to S and 

bucket the hits (called “hot spots”) by diagonal.

S

T

k

At Tj there are two 
hits in the table giving 
positions i1 and i2 in S, 
which are in diagonals 
j - i1 and j - i2

j

i1

i2

15-853 Page 30

FASTA: Step 3
Join hits along diagonals into runs by
1. Each hit gets a positive score and each space between 

hits a negative score that increases with distance.   
2. Finding runs that have maximal score (i.e. the sum of 

the scores cannot be increase by extending the run).
There might be more than one such run in a diagonal.

S

T
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FASTA: Step 4
Select top 10 scores from step 3, and re-score them 

using a substitution matrix (e.g. BLOSUM62).
The best score is called init1.
Any scores below a threshold is thrown out.  This 

leaves between 0 and 10 runs.
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FASTA: Step 5 (method 1)
Each diagonal run k can be described by the start 

location in the matrix, (ik, jk), and its length, dk.
We say that run l dominates run k if 

il ¸ ik + d and jl ¸ jk + d.
For all pairs of runs l,k such that l dominates k, score 

the gap from the end of run k to the start of run l.

l
k

l does not dominate k

l

k

l dominates k

gap score
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FASTA: Step 6
Create a graph in which
1. each run is a vertex weighted by its score
2. each pair (l,k) with l dominating k is an edge

weighted by the gap score
Find the heaviest weight path in the graph, where 

the vertex weight is included in the path length.
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FASTA: Step 7
After the path is found, dynamic programming is 

used to give a more accurate score to the path.
We now have a global alignment problem (since we 

know the start and end of each string), so we can 
use the Myers/Ukkonen algorithm.
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FASTA: Summary
1. Break source S into k-tuples (adjacent sequence of k 

characters).   Typically k=2 for proteins.
For each T in the database

2. Find all occurrences of tuples of S in T. 
3. Join matches along diagonals if they are nearby
4. Re-score top 10 matches using, e.g. Blosum matrix.
Method 1: (initn)
5. With top 10 scored matches, make a weighted graph 

representing scores and gap scores between matches.
6. Find heaviest path in the graph, 
7. re-score the path using dynamic programming
Method 2: (opt)
5. With top match, score band of width w around the diagonal

Rank order the matches found in steps 2-7.
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FASTA: Step 5 (method 2)
Select best score for a diagonal (this was init1)
Use dynamic programming to score a band of width w 

(typically 16 or 32 for proteins) around the best 
diagonal

best scoring diagonal

w
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BLAST
1. Break source S into k-tuples (adjacent sequence of k 

characters).   Typically k=3 for proteins.
2. For each k-tuple w (word), find all possible k-tuples that 

score better than threshold t when compared to w
(using e.g. BLOSUM matrix).   
This gives an expanded set Se of k-tuples.

For each T in the database
3. Find all occurrences (hits) of Se in T.
4. Extend each hit along the diagonal to find a locally 

maximum score, and keep if above a threshold s.  This is 
called a high-scoring pair (HSP).  This extension takes 
90% of the time.
Optimization: only do this if two hits are found nearby on 
the diagonal.
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BLAST
The initial BLAST did not deal with indels (gaps), but 

a similar method as in FASTA (i.e. based on a 
graph) can be, and is now, used.

The BLAST thresholds are set based on statistical 
analysis to make sure that few false positives are 
found, while not having many false negatives.

Note that the main difference from FASTA is the 
use of a substitution matrix in the first stage, 
thus allowing a larger k for the same accuracy.

A finite-state-machine is used to find k-tuples in T, 
and runs in O(|T|) time independently of k.

The BLAST page


