15-853:Algorithms in the Real World

Computational Biology IT
- Sequence Alignment
- Database searches

15-853 Page 1

Extending LCS for Biology

The LCS/Edit distance problem is not a “practical”
model for comparing DNA or proteins.

Why?

Good example of the simple model failing.

15-853 Page 2

Extending LCS for Biology

The LCS/Edit distance problem is not a "practical”
model for comparing DNA or proteins.

- Some amino-acids are “closer” to each others
than others (e.g. more likely to mutate among
each other, or closer in structural form).

- Some amino-acids have more “information” than
others and should contribute more.

- The cost of a deletion (insertion) of length n
should not be counted as n times the cost of a
deletion (insertion) of length 1.

- Biologist often care about finding “local”
alignments instead of a global alignment.

15-853 Page 3

What we will talk about today

Extensions

+ Sequence Alignment: a generalization of LCS to
account for the closeness of different elements

+ Gap Models: More sophisticated models for
accounting for the cost of adjacent insertions or
deletions

+ Local Alignment: Finding parts of one sequence in
parts of another sequence.

Applications

+ FASTA and BLAST: The most common sequence
matching tools used in Molecular Biology.

15-853 Page 4

Sequence Alignment

A generalization of LCS / Edit Distance

Extension: A’ is an extension of A if it is A with
spaces _ added.

Alignment: An alighment of A and B is a pair of
extensions A’ and B' such that |A’| = |B'|

Example:
A —abacda
B maadcddc
A> = _abacda_
B> =aad cddc

15-853 Page 5

The Score (Weight)

¥+ = alphabet including a “space” character
Scoring Function: o(x,y), X,y € *

Alignment score: W(A',B)= > o(A;,B})
i=1.A]
Optimal alignment: An alignment (A’, B') of (A, B)
such that W(A',B) is maximized. We will denote
this optimized score as W(A,B).

Same as |[LCS| when: 4 (x,y)= 1 ifx=y#_
0 otherwise

15-853 Page 6

Example

Az abacdac o(xy)
B=cadcddc a b c d _
Alignment 1 a2 0 0 0 -1
_abacdac b0 2 1 0 -1
I I | 6 clo 1 2 0 -1
cad_cddc dio o0 o0 2 -1
Alignment 2 e B R
aba_cdac
1 11 17 Which is the better
_cadcddc alignment?

15-853 Page 7

Scores vs. Distances

Maximizing vs. Minimizing.
Scores:

- Can be positive, zero, or negative. We try to

maximize scores.
Distances:

- Must be non-negative, and typically we assume
they obey the triangle inequality (i.e. they are a
metric). We try to minimize distances.

Scores are more flexible, but distances have better
mathematical properties. The local alignment
method we will use requires scores.

15-853 Page 8

o(x,y) for Protein Matching BLOSUM®&2 Matrix
AR NDT COQEGHTI1TLKMFPSTWYVBZX *
A 4-1-2-20-1-1 0-2-1-1-1-1-2-11 0-3-2 0-2-1 0-4
How is the function/matrix derived? A S S S S-S
+ Identity: entries are O or 1, either same or not o 5 39 6945 8115081120155 0.4
- Genetic code: number of DNA changes. €1 0024252088 1251015221414
Remember that each amino acid is coded with a 3 H2 6113005 6554315152 2300.1.4
bp codon. Changes can be between 0 and 3 L s s s i s iasaa
- Chemical Similarity: size, shape, or charge N1 233 02321 535 02414 13014
- Experimental: see how often mutations occur from - O G S SR
one amino acid to another in real data. T 0104149904441 5115532 0141 0.4
This is what is used in practice. VO A B
- PAM (or dayhoff) Matrix 554 343 011 094 0355 014334 114
- BLOSUM (BLOcks SUbstitution Matrix) S e R e - - g
* 4 -4 1
15-853 Page 9 15-853 Page 10
Optimal Alignment Recursive Solution
Edit Distance, from last lecture:
D(A, €) = |Al
D(z, B) = |g| Wo = 0
D(A:x, B:x) = D(A,B) Wy = Wi o+o(a,)
D(A:a, B:b) = min(l + D(A:q, B), 1+ D(A, B:b)) Wo; = W jut+o(Lby)
The optimal alignment problem: W,y i +o(&.b;)
W(e,) = 0 Wy = maxsW,;+o(a,)
W(e, B:b) = o(_, b)+W(,B) W, +o(b)
W(A:q, €) = ofa,)+ W(A, &)
W(A:q, B:b) = max(o(a, b) + W(A, B),
o(_, b) + W(A:q, B),
o(a,)+ W(A, B:b))
15-853 Page 11 15-853 Page 12

Dynamic programming

for 1 =1 ton

MLi,1] = o(ALil, _)
for j =1 tonm

M[1.J1 = o(C_ ., BLID:

for 1 =1 ton
for j =1 tom
MLi.j] = max3(es(AL1].BOD) + M[i-1,j-1],
o(ALil, _) + M[i-1.j1,
o(C _ .BOD + MLi ,j-1

D:

15-853 Page 13

Example)

B .
a t c a c a c ‘a t c _
al2 -1 0 -1

0—--1 -2 -3 -4 -5 -6 -7

-

W -1 2 1 -1
t|-1 -1 1 0 -1 -2 -3 -4 clo 1 2 -1
N

A c|-2-1 0 3 2 1 0 -1 _ /-1 -1 -1 -1
a|l-3 0 -1 2 5 4 3 2
N
t|-4 -1 2 1 4 67574

tcat _ 3 blanks inserted = -3
L1111 1 t-c match =1

3 perfect matches = 6

atcacac TOTAL=4

15-853 Page 14

Optimizations

Space efficiency:
The divide-and-conquer technique still works.
The Ukkonen/Myers algorithm:

A variant works, but O(dn) time is no longer
guaranteed since the distance from the diagonal

cannot in general be directly bounded by the score.

Bounds, however, can be given in ferms of relative
weights of matrix elements and the technique
works reasonably well in practice.

Real Problem: solves global-alignment problem when
biologists care about the local-alignment problem.

15-853 Page 15

Gap Penalties

Problem with technique so far: Longer indels
(insertions or deletions) should not be weighted as
the sum of single indels.

Gap: indel of k characters is a gap of length k
Gap score: let x, be the score of a gap of length k

What is a good gap scoring function?

Can the dynamic programming approach be
extended?

15-853 Page 16

Possible Gap Scores

Xk:(l"'Bk

k k

"affine gap model” “concave gap model”

Note that in the maximization problem, gap scores
should be negative (o and B are negative).

15-853 Page 17

Waterman-Smith-Beyer Algorithm

Wy = 0
Wi = %
k Wo; = X;

Wi—l,j—l + O'(ai,bj)
W = maxymax]_{W, j +x3
maxj_{Wi_ j + %}

Every cell in the matrix has fo calculate its score
based on all previous elements in its row and column.

Time = O(nm?2 + n?m)
This is not very practical

15-853 Page 18

Affine Gap Model: X, = o+ k

Algorithm: (Gotoh '82) for each cell of the n £m
matrix keep three values, E, F and W.

E = optimal alignment
of form A, B:_

F = optimal alignment
of form A:_, B

W = optimal alignment

Constant time per cell.
Total time: O(nm)

15-853 Page 19

Affine Gap Model: X, = o+ k

Can be written as:

on = - We = 0
Eij+h8 Wip = a+/i

By = maX{Wi_l,j varp Wop = a+fi

Fo = —o Wiy j1 +0(a.by)
Foiath W; = maxyE;

Fy = maX{Wi,jl+a+ﬂ Fi

15-853 Page 20

Other Gap Models

Function Form

Time

General O(nm2 + n?m)
Affine Xe=a+Bk O(nm)
Logarithmic X, = o+ B log(k) |O(nm)?
Concave Downwards O(nmlogn)
Piecewise linear I-segments O(Inm)

15-853

Page 21

Local Alignment

In practice we often need to match subregions of A
with subregions of B.

eg. A ‘ ‘
B L/

We want to find the best matches with the same

distance metric as before used within each match.
15-853 Page 22

Local Alignment

Algorithm: (Smith and Waterman '81)

W, =0 W, = 0
Wo; = 0 Wo; = 0
Wi—l,j—1+o-(ailbj)
max)_{W. . , +X
Wy, = max ik’l{w"”k & Wy = max
maxy Wi ; + X}

0

Wiy j +o(a,by)

W j+o(@a,)
W j1+o(by)
0

With Gap Scores

Without Gap Scores

Only real difference from before is the O in the max.
We might want global or local maximums of Wi;

15-853

Page 23

Example txy)

B
a t c a c a c ‘atc_
al2 -1 0 -1
O 0 0 0o 0O 0O o0 o t 1 2 1 1
. - -
tf0O 0 2 1 0 1 0 1 clo 1 2 -1
AW N
AC00143212 -1 -1 -1 -1
W W N
al0O 2 1 3 6 5 4 3
o M JHCH

The algorithm finds 3 “local maximums” corresponding
to 3 hits. Although the three matches shown are
fully on diagonals, this is not always the case.

15-853 Page 24

Database Search

Basic model:

1. User selects a database and submits a source
sequence S, typically via the web (or email)

2. The remote computer compares S o each target
T in its database. The runtime depends on the
length of S and the size of the database.

3. The remote computer returns a ranked list of the
"best" hits found in the database, usually based
on local alignment.

Example of BLAST

15-853 Page 25

Algorithms in the "“real world"

Dynamic programming is too expensive even with
optimizations.

Heuristics are used that approximate the dynamic
programming solution. Dynamic program is often
used at end to give final score.

Main two programs in practice:
- FASTA (1985)

- BLAST (Basic Local Alignment Search Tool)
(1990)

Lipman involed in both, Myers involved in BLAST.
There are many variants of both.

15-853 Page 26

FASTA and BLAST

The idea of both algorithms is to find approximate
matches by composing smaller exact matches.

Both algorithms loop over each string T in the
database and find the “heuristically” best match
for the search string along with its score
(assuming the score is above some threshold).

The matches across the T in the database are
returned in rank order (highest-score first).

15-853 Page 27

FASTA: Step 1

Break source S into k-tuples (adjacent sequence of k
characters) using a “sliding window". Typically
k=1 or 2 for proteins, and k=4-6 for DNA.

S

[

k

Create a table that maps each k-tuple value found to
all the start positions with that value

15-853 Page 28

FASTA: Step 2

Linearly search T for each k-tuple belonging to S and
bucket the hits (called “hot spots”) by diagonal.

T
N N At T, there are two

i > N hits in the table giving
1 " . i

S positions i; and i, in S,
. N\ N which are in diagonals
I2 N j-irandj-i,

k

15-853 Page 29

FASTA: Step 3

Join hits along diagonals into runs by

1. Each hit gets a positive score and each space between

hits a negative score that increases with distance.

2. Finding runs that have maximal score (i.e. the sum of
the scores cannot be increase by extending the run).

There might be more than one such run in a diagonal.
T

\\ \\
s AN
\\ N h

15-853 Page 30

FASTA: Step 4

Select top 10 scores from step 3, and re-score them
using a substitution matrix (e.g. BLOSUM62).

The best score is called init;.

Any scores below a threshold is thrown out. This
leaves between O and 10 runs.

15-853 Page 31

FASTA: Step 5 (method 1)

Each diagonal run k can be described by the start
location in the matrix, (iy, ji), and its length, d,.

We say that run | dominates run k if
i, i+ dand j, j+d.

For all pairs of runs |,k such that | dominates k, score
the gap from the end of run k to the start of run .

}\ \ Wap sqore
|
|

| does not dominate k | dominates k

15-853 Page 32

FASTA: Step 6

Create a graph in which

1. each run is a vertex weighted by its score

2. each pair (1,k) with | dominating k is an edge
weighted by the gap score

Find the heaviest weight path in the graph, where
the vertex weight is included in the path length.

15-853 Page 33

FASTA: Step 7

After the path is found, dynamic programming is
used to give a more accurate score to the path.

We now have a global alignment problem (since we
know the start and end of each string), so we can
use the Myers/Ukkonen algorithm.

15-853 Page 34

FASTA: Summary

1. Break source S into k-tuples (adjacent sequence of k
characters). Typically k=2 for proteins.

For each T in the database
2. Find all occurrences of tuples of Sin T.
3. Join matches along diagonals if they are nearby
4. Re-score top 10 matches using, e.g. Blosum matrix.
Method 1: (init,)
5. With top 10 scored matches, make a weighted gr‘aﬁh

representing scores and gap scores between matches.

6. Find heaviest path in the graph,

7. re-score the path using dynamic programming

Method 2: (opt)

5. With top match, score band of width w around the diagonal
Rank order the matches found in steps 2-7.

15-853 Page 35

FASTA: Step 5 (method 2)

Select best score for a diagonal (this was init,)

Use dynamic programming to score a band of width w
(typically 16 or 32 for proteins) around the best
diagonal

best scoring diagonal

15-853 Page 36

BLAST

1. Break source S into k-tuples (adjacent sequence of k
characters). Typically k=3 for proteins.
2. For each k-tuple w (word), find all possible k-tuples that

score better than threshold t when compared to w

(using e.g. BLOSUM matrix).

This gives an expanded set S, of k-tuples.

For each T in the database

3. Find all occurrences (hits) of S, in T.

4. Extend each hit along the diagonal to find a locally
maximum score, and keep if above a threshold s. This is
called a high-scoring pair (HSP). This extension takes
90% of the time.

Optimization: only do this if two hits are found nearby on
the diagonal.

15-853 Page 37

BLAST

The initial BLAST did not deal with indels (gaps), but
a similar method as in FASTA (i.e. based on a
graph) can be, and is how, used.

The BLAST thresholds are set based on statistical
analysis to make sure that few false positives are
found, while not having many false negatives.

Note that the main difference from FASTA is the
use of a substitution matrix in the first stage,
thus allowing a larger k for the same accuracy.

A finite-state-machine is used to find k-tuples in T,
and runs in O(| T|) time independently of k.

The BLAST page

15-853 Page 38

10

