
1

15-853 Page 1

15-853:Algorithms in the Real World

Computational Biology II
– Sequence Alignment
– Database searches

15-853 Page 2

Extending LCS for Biology
The LCS/Edit distance problem is not a “practical”

model for comparing DNA or proteins.

Why?

Good example of the simple model failing.

15-853 Page 3

Extending LCS for Biology
The LCS/Edit distance problem is not a “practical”

model for comparing DNA or proteins.
– Some amino-acids are “closer” to each others

than others (e.g. more likely to mutate among
each other, or closer in structural form).

– Some amino-acids have more “information” than
others and should contribute more.

– The cost of a deletion (insertion) of length n
should not be counted as n times the cost of a
deletion (insertion) of length 1.

– Biologist often care about finding “local”
alignments instead of a global alignment.

15-853 Page 4

What we will talk about today
Extensions
• Sequence Alignment: a generalization of LCS to

account for the closeness of different elements
• Gap Models: More sophisticated models for

accounting for the cost of adjacent insertions or
deletions

• Local Alignment: Finding parts of one sequence in
parts of another sequence.

Applications
• FASTA and BLAST: The most common sequence

matching tools used in Molecular Biology.

2

15-853 Page 5

Sequence Alignment
A generalization of LCS / Edit Distance
Extension: A’ is an extension of A if it is A with

spaces _ added.
Alignment: An alignment of A and B is a pair of

extensions A’ and B’ such that |A’| = |B’|
Example:

A = a b a c d a
B = a a d c d d c

A’ = _ a b a c d a _
B’ = a a d _ c d d c

15-853 Page 6

The Score (Weight)
Σ+ = alphabet including a “space” character
Scoring Function: σ(x,y), x,y ∈ Σ+

Alignment score:

Optimal alignment: An alignment (A’, B’) of (A, B)
such that W(A’,B’) is maximized. We will denote
this optimized score as W(A,B).

Same as |LCS| when:

()∑
=

=
|'|..1

',')','(
Ai

ii BABAW σ

⎩
⎨
⎧ ≠=

=
otherwise0

_ if1
),(

yx
yxσ

15-853 Page 7

Example
A = a b a c d a c
B = c a d c d d c

Alignment 1
_ a b a c d a c
| | | |

c a d _ c d d c

Alignment 2
a b a _ c d a c

| | | |
_ c a d c d d c

-1-1-1-1-1_

-12000d

-10210c

-10120b

-10002a

_dcba

σ(x,y)

Which is the better
alignment?

6

7

15-853 Page 8

Scores vs. Distances
Maximizing vs. Minimizing.
Scores:

– Can be positive, zero, or negative. We try to
maximize scores.

Distances:
– Must be non-negative, and typically we assume

they obey the triangle inequality (i.e. they are a
metric). We try to minimize distances.

Scores are more flexible, but distances have better
mathematical properties. The local alignment
method we will use requires scores.

3

15-853 Page 9

σ(x,y) for Protein Matching
How is the function/matrix derived?
• Identity: entries are 0 or 1, either same or not
• Genetic code: number of DNA changes.

Remember that each amino acid is coded with a 3
bp codon. Changes can be between 0 and 3

• Chemical Similarity: size, shape, or charge
• Experimental: see how often mutations occur from

one amino acid to another in real data.
This is what is used in practice.
– PAM (or dayhoff) Matrix
– BLOSUM (BLOcks SUbstitution Matrix)

15-853 Page 10

BLOSUM62 Matrix
A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4
* -4 1

15-853 Page 11

Optimal Alignment Recursive Solution

min(1 + D(A:a, B), 1 + D(A, B:b)) =D(A:a, B:b)
D(A, B)=D(A:x, B:x)
|B|=D(ε, B)
|A|=D(A, ε)

Edit Distance, from last lecture:

max(σ(a, b) + W(A, B),
σ(_, b) + W(A:a, B),
σ(a, _) + W(A, B:b))

=W(A:a, B:b)
σ(a, _) + W(A, ε)=W(A:a, ε)
σ(_, b) + W(ε, B)=W(ε, B:b)
0=W(ε, ε)

The optimal alignment problem:

15-853 Page 12

⎪
⎩

⎪
⎨

⎧

+
+

+
=

+=
+=

=

−

−

−−

−

−

)(_,
_),(

),(
max

)(_,
_),(

0

1,

,1

1,1

1,00

0,10

00

jji

iji

jiji

ij

ijj

iii

bW
aW

baW
W

bWW
aWW

W

σ
σ

σ
σ
σ

4

15-853 Page 13

Dynamic programming
for i = 1 to n

M[i,1] = σ(A[i], _)
for j = 1 to m

M[1,j] = σ(_ , B[i]);

for i = 1 to n
for j = 1 to m
M[i,j] = max3(σ(A[i],B[j]) + M[i-1,j-1],

σ(A[i], _) + M[i-1,j],
σ(_ ,B[j]) + M[i ,j-1]);

15-853 Page 14

Example

_ t c a t _ _
| | | |

a t c a c a c

456412-1-4t

23452-10-3a

-101230-1-2c

-4-3-2-101-1-1t

-7-6-5-4-3-2-10

cacacta

A

B

-1-1-1-1_

-1210c

-112-1t

-10-12a

_cta

c(x,y)

3 blanks inserted = -3
1 t-c match = 1
3 perfect matches = 6

TOTAL = 4

15-853 Page 15

Optimizations
Space efficiency:

The divide-and-conquer technique still works.
The Ukkonen/Myers algorithm:

A variant works, but O(dn) time is no longer
guaranteed since the distance from the diagonal
cannot in general be directly bounded by the score.

Bounds, however, can be given in terms of relative
weights of matrix elements and the technique
works reasonably well in practice.

Real Problem: solves global-alignment problem when
biologists care about the local-alignment problem.

15-853 Page 16

Gap Penalties
Problem with technique so far: Longer indels

(insertions or deletions) should not be weighted as
the sum of single indels.

Gap: indel of k characters is a gap of length k
Gap score: let xk be the score of a gap of length k

What is a good gap scoring function?
Can the dynamic programming approach be

extended?

5

15-853 Page 17

Possible Gap Scores

k

-xk

k

-xk

“affine gap model” “concave gap model”

Note that in the maximization problem, gap scores
should be negative (α and β are negative).

xk = α + β k

15-853 Page 18

Waterman-Smith-Beyer Algorithm

⎪
⎩

⎪
⎨

⎧

+
+

+
=

=
=
=

−=

−=

−−

}{max
}{max

),(
max

0

,1

,1

1,1

0

0

00

kjki
i
k

kkji
j
k

jiji

ij

jj

ii

xW
xW

baW
W

xW
xW

W

σ

Every cell in the matrix has to calculate its score
based on all previous elements in its row and column.

Time = O(nm2 + n2m)
This is not very practical

k

15-853 Page 19

Affine Gap Model: xk = α + β k

Constant time per cell.
Total time: O(nm)

W W

E

W

E

F

W

F

+ β

+ α + β

+ β

+ α + β

+ σ(ai,bj)

E = optimal alignment
of form A, B:_

F = optimal alignment
of form A:_, B

W = optimal alignment

Algorithm: (Gotoh ’82) for each cell of the n £ m
matrix keep three values, E, F and W.

15-853 Page 20

Affine Gap Model: xk = α + β k
Can be written as:

⎪
⎩

⎪
⎨

⎧ +
=

+=
+=

=

−−

ij

ij

jiji

ij

j

i

F
E

baW
W

jW
iW

W

),(
max

0

1,1

0

0

00

σ
βα
βα

⎪⎩

⎪
⎨
⎧

++
+

=

−∞=

−

−

βα
β

ji

ji
ij

j

W
E

E

E

,1

,1

0

max

⎪⎩

⎪
⎨
⎧

++
+

=

−∞=

−

−

βα
β

1,

1,

0

max
ji

ji
ij

i

W
F

F

F

6

15-853 Page 21

Other Gap Models

TimeFunction Form

O(lnm)l-segmentsPiecewise linear
O(nmlogn)Concave Downwards
O(nm)?xk = α + β log(k)Logarithmic
O(nm)xk = α + β kAffine
O(nm2 + n2m)General

15-853 Page 22

Local Alignment
In practice we often need to match subregions of A

with subregions of B.
e.g. A

B
A

B

A

B
We want to find the best matches with the same

distance metric as before used within each match.

15-853 Page 23

Local Alignment
Algorithm: (Smith and Waterman ’81)

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+
+

+

=

=
=

−=

−=

−−

0
}{max
}{max

),(

max

0
0

,1

,1

1,1

0

0

kjki
i
k

kkji
j
k

jiji

ij

j

i

xW
xW

baW

W

W
W

σ

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+
+

+

=

=
=

−

−

−−

0
)(_,

_),(
),(

max

0
0

1,

,1

1,1

0

0

jji

iji

jiji

ij

j

i

bW
aW

baW

W

W
W

σ
σ

σ

With Gap Scores Without Gap Scores

Only real difference from before is the 0 in the max.
We might want global or local maximums of Wij

15-853 Page 24

Example

The algorithm finds 3 “local maximums” corresponding
to 3 hits. Although the three matches shown are
fully on diagonals, this is not always the case.

56753410t

34563120a

21234100c

10101200t

00000000

cacacta

A

B

-1-1-1-1_

-1210c

-112-1t

-10-12a

_cta

c(x,y)

7

15-853 Page 25

Database Search
Basic model:
1. User selects a database and submits a source

sequence S, typically via the web (or email)
2. The remote computer compares S to each target

T in its database. The runtime depends on the
length of S and the size of the database.

3. The remote computer returns a ranked list of the
“best” hits found in the database, usually based
on local alignment.

Example of BLAST

15-853 Page 26

Algorithms in the “real world”
Dynamic programming is too expensive even with

optimizations.
Heuristics are used that approximate the dynamic

programming solution. Dynamic program is often
used at end to give final score.

Main two programs in practice:
– FASTA (1985)
– BLAST (Basic Local Alignment Search Tool)

(1990)
Lipman involed in both, Myers involved in BLAST.
There are many variants of both.

15-853 Page 27

FASTA and BLAST
The idea of both algorithms is to find approximate

matches by composing smaller exact matches.

Both algorithms loop over each string T in the
database and find the “heuristically” best match
for the search string along with its score
(assuming the score is above some threshold).

The matches across the T in the database are
returned in rank order (highest-score first).

15-853 Page 28

FASTA: Step 1

Create a table that maps each k-tuple value found to
all the start positions with that value

S

k

Break source S into k-tuples (adjacent sequence of k
characters) using a “sliding window”. Typically
k=1 or 2 for proteins, and k=4-6 for DNA.

8

15-853 Page 29

FASTA: Step 2
Linearly search T for each k-tuple belonging to S and

bucket the hits (called “hot spots”) by diagonal.

S

T

k

At Tj there are two
hits in the table giving
positions i1 and i2 in S,
which are in diagonals
j - i1 and j - i2

j

i1

i2

15-853 Page 30

FASTA: Step 3
Join hits along diagonals into runs by
1. Each hit gets a positive score and each space between

hits a negative score that increases with distance.
2. Finding runs that have maximal score (i.e. the sum of

the scores cannot be increase by extending the run).
There might be more than one such run in a diagonal.

S

T

15-853 Page 31

FASTA: Step 4
Select top 10 scores from step 3, and re-score them

using a substitution matrix (e.g. BLOSUM62).
The best score is called init1.
Any scores below a threshold is thrown out. This

leaves between 0 and 10 runs.

15-853 Page 32

FASTA: Step 5 (method 1)
Each diagonal run k can be described by the start

location in the matrix, (ik, jk), and its length, dk.
We say that run l dominates run k if

il ¸ ik + d and jl ¸ jk + d.
For all pairs of runs l,k such that l dominates k, score

the gap from the end of run k to the start of run l.

l
k

l does not dominate k

l

k

l dominates k

gap score

9

15-853 Page 33

FASTA: Step 6
Create a graph in which
1. each run is a vertex weighted by its score
2. each pair (l,k) with l dominating k is an edge

weighted by the gap score
Find the heaviest weight path in the graph, where

the vertex weight is included in the path length.

15-853 Page 34

FASTA: Step 7
After the path is found, dynamic programming is

used to give a more accurate score to the path.
We now have a global alignment problem (since we

know the start and end of each string), so we can
use the Myers/Ukkonen algorithm.

15-853 Page 35

FASTA: Summary
1. Break source S into k-tuples (adjacent sequence of k

characters). Typically k=2 for proteins.
For each T in the database

2. Find all occurrences of tuples of S in T.
3. Join matches along diagonals if they are nearby
4. Re-score top 10 matches using, e.g. Blosum matrix.
Method 1: (initn)
5. With top 10 scored matches, make a weighted graph

representing scores and gap scores between matches.
6. Find heaviest path in the graph,
7. re-score the path using dynamic programming
Method 2: (opt)
5. With top match, score band of width w around the diagonal

Rank order the matches found in steps 2-7.

15-853 Page 36

FASTA: Step 5 (method 2)
Select best score for a diagonal (this was init1)
Use dynamic programming to score a band of width w

(typically 16 or 32 for proteins) around the best
diagonal

best scoring diagonal

w

10

15-853 Page 37

BLAST
1. Break source S into k-tuples (adjacent sequence of k

characters). Typically k=3 for proteins.
2. For each k-tuple w (word), find all possible k-tuples that

score better than threshold t when compared to w
(using e.g. BLOSUM matrix).
This gives an expanded set Se of k-tuples.

For each T in the database
3. Find all occurrences (hits) of Se in T.
4. Extend each hit along the diagonal to find a locally

maximum score, and keep if above a threshold s. This is
called a high-scoring pair (HSP). This extension takes
90% of the time.
Optimization: only do this if two hits are found nearby on
the diagonal.

15-853 Page 38

BLAST
The initial BLAST did not deal with indels (gaps), but

a similar method as in FASTA (i.e. based on a
graph) can be, and is now, used.

The BLAST thresholds are set based on statistical
analysis to make sure that few false positives are
found, while not having many false negatives.

Note that the main difference from FASTA is the
use of a substitution matrix in the first stage,
thus allowing a larger k for the same accuracy.

A finite-state-machine is used to find k-tuples in T,
and runs in O(|T|) time independently of k.

The BLAST page

