15-853:Algorithms in the Real World

Satisfiability Solvers (Lectures 1 & 2)

1

Satisfiability (SAT)

The "original" NP-Complete Problem.

• Input:

Variables $V = \{x_1, x_2, ..., x_n\}$, Boolean Formula Φ (typically in conjunctive normal form (CNF)). e.g., $\Phi = (x1 v x2 v - x3) \& (-x1 v - x2 v x3) \& ...$

• Output:

Either a satisfying assignment $f:V \to \{\text{True}, \text{False}\}$ that makes Φ evaluate to True, OR "Unsatisfiable" if no such assignment exists.

2

Extensions/Related Problems

- Satisfiability Modulo Theories
 Input: a formula Φ in quantifier-free first-order logic.
 Output: is Φ satisfiable?
- Theorem Provers
- Pseudo-boolean optimization
- Planners (Quantified SAT Solvers)

3

Applications

- Verification:
 - Hardware: Electronic design automation market is about \$6 Billion

- Protocols: e.g., use temporal logic to reason about concurrency
- Software
- Optimization
 - Competitor to Integer Programming solutions in some domains

Math: Prove conjectures in finite algebra

/

An Aside: Example Proof by Machine

- Thm: Robbins Algebra = Boolean Algebra
- Robbins Algebra: values {0,1} and 3 axioms:

x v (y v z) = (x v y) v zx v y = y v z

 $\neg (\neg(x \lor y) \lor \neg(x \lor \neg y)) = x$

- 1
- Conjectured in 1933
- Proved in 1996 by prover EQP running for 8 days (RS/6000 with ~30 MB RAM)
- · Limited success since 1990s.

5

Annual Competitions

- SAT Competition
- CADE ATP System Competition
- ASP Solver Competition
- SMT-COMP
- Constraint Satisfaction Solver Competition
- Competitition/Exhibition of Termination Tools
- TANCS
- QBF Solvers Evaluation
- Open Source Solvers: SATLIB, SATLive

Algorithms for SAT

- Complete (satisfying assignment or *UNSAT*)
 - Davis-Putnam-Logemann-Loveland algorithm (DPLL)
- Incomplete (satisfying assignment or FAILURE)
 - GSAT
 - WalkSAT

7

Prerequisite: Proof Systems

- What constitutes a proof of unsatisfiability?
- For a language L in {0,1}*, a <u>proof system</u> for membership in L is a poly-time computable function P such that
 - For all x in L, there is a witness y with P(x,y) = 1
 - For all x not in L, for all y, P(x,y) = 0
- Complexity: worst case length of shortest witness for an x in L.

8

Proof System Examples

- L = satisfiable boolean formulae
- What's the lowest complexity proof system for this you can come up with?
- What about for L = *un*satisfiable boolean formulae?

9

Proof System Examples

- For unsatisfiability:
 - Witness = truth table T of Φ
 - P(Φ, T) checks that T is indeed the truth table for Φ, and all entries are zero
- Corresponds to a (failed) brute force search for a solution
- Exponential Complexity
- Is there a proof system for UNSAT with poly complexity? (Does NP = Co-NP?)

10

Resolution Proof System

• The Resolution Rule:

For clauses B, C and variable x, From (B v x) & (C v \neg x) derive (B v C)

- Witness = a sequence of valid derivations starting from the clauses of Φ.
- Sound: (B v x) & (C v ¬x) implies (B v C)
- Complete for unsatisfiability:
 - Every unsatisfiable formula has a derivation of a contradiction (i.e., the empty clause).

11

Duality

- Truth table proof system gives proofs by failed search for a satisfying assignment.
- Resolution proof system gives proofs by showing the initial clauses (constraints) yield a contradiction. This is a systematic search for additional constraints the solution must satisfy.

High level idea for many solvers 😕

- Alternate search for solution with search for properties of any solution:
 - Search for solution in some small part S of the space
 - If search in S fails, search for a reason for this failure, in the form of a new constraint C the solution must satisfy.
 - Search for a solution in a new part of the space, using new constraint to help guide the search
 - Repeat

13

Notation

- Convenient notational change for SAT:
 - Clauses are sets: (a v ¬b v c) becomes {a, ¬b, c}
 - Formulae become sets of clauses
 - Partial assignments become sets of literals that contain at most one of $\{x_i, \neg x_i\}$ for each i.
 - Assignments contain exactly one of $\{x_i, \neg x_i\}$ for each i.
- Restriction: $\Phi|_{\{x\}}$ is the residual formula under partial assignment $\{x\}$, e.g.,

$$\{\{a, \neg b, c\}, \{\neg a, b, d\}\} \mid_{\{\neg a\}} = \{\{\neg b, c\}\}\$$

14

Basic DPLL ('60, '62)

 Simple tree search for a solution, guided by the clauses of Φ.

```
DPLL-recursive(formula F, partial assignment p)
 (F,p) = Unit-Propagate(F, p);
                                         If a clause tells you
 If F contains clause {} then
                                         the value of a var,
       return (UNSAT, null);
                                         set it appropriately.
If F = {} then
       return (SAT, p);
 Choose a branch.
(status, p') = DPLL-recursive(F|_{\{x\}}, pU{x});
                                              Many heuristics
If status == SAT then
                                              to choose from.
       return (SAT, p');
Else return
       DPLL-recursive(F|_{\{\neg x\}}, pU\{\neg x\});
```

Basic DPLL

If a clause tells you the value of a variable, set it appropriately.

Unit-Propagate(formula F, partial assignment p)

If F has no empty clause then

While F has a unit clause $\{x\}$ $F = F |_{\{x\}}$, $p = p \cup \{x\}$,

return (F,p)

16

Embellishing DPLL

- Branch Selection Heuristics
- Clause Learning
- Backjumping heuristics
- Watched literals
- · Randomized Restarts
- · Symmetry breaking
- More powerful proof systems
- ...

17

Branch Selection Heuristics

- Random
- Max occurrence in clauses of min size
- Max occurrence in as yet unsatisfied clauses
- With probability proportional to some function of how often the literal appears in partial assignments that lead to unsatisfiable restricted formulae.
- ..

Clause Learning

- When DPLL discovers F|_p is unsatisfiable, it derives (learns) a reason for this in the form of new clauses to add to F.
- What clauses are learned, and how, make <u>huge</u> differences in performance.
- Trivially learned clause: if F|_p is unsatisfiable for p = {x₁, x₂, ..., x_k}, derive clause {¬x₁, ¬x₂, ..., ¬x_k}
 But we want short clauses that constrain the solution space as much as possible...

19

Clause Learning

- Use the clauses to guide the search:
 - So far we've seen unit-propagation, and search with restriction.
 - We want to learn clauses that let us prune effectively – this requires us to deduce "higher level" reasons why some partial assignment is no good.
 - Use resolution (or some technique) to try to prove that $F|_p$ is unsatisfiable for nodes p high up the

20

High level: DPLL w/Clause Learning

```
DPLL-CL (formula F)
p = {}
While(true)
Choose a literal x such that x and ¬x are not in p;
p = pU{x};
Deduce status from (F, p); // SAT, UNSAT, or unknown
If status == SAT then return (SAT, p);
If status == UNSAT then
Analyze-Conflict(p); // Add learned clause(s) to F
if p = {} then return (UNSAT, null);
Else backtrack; // remove literals from p
// based on learned clause(s)
```

If status == unknown then continue; // branch again

21

23

Deduce

- Tradeoff between searching more partial assignments (going deeper in the tree), and searching for proofs of unsatisfiability higher up in the tree.
- Currently, deduction is typically just iterated unit-propagation. (Other embellishments to DPLL seem to render more complex deduction unhelpful in practice.)

22

Analyze Conflict: Implication Graph

$$F = \{\{x_{1}, x_{5}\}, \{\neg x_{3}, x_{4}, \neg x_{5}\}\}$$

$$\xrightarrow{\{x_{1}, x_{5}\}} x_{5}$$

$$\xrightarrow{\{\neg x_{3}, x_{4}, \neg x_{5}\}} x_{4}$$

$$\xrightarrow{\{\neg x_{4}, x_{4}, \neg x_{5}\}} x_{4}$$

$$\xrightarrow{\{\neg x_{4}, x_{4}, \neg x_{5}\}} x_{4}$$

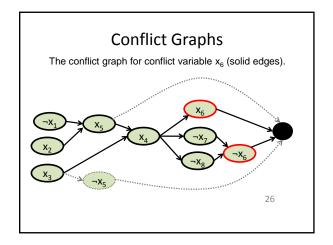
$$\xrightarrow{\{\neg x_{4}, x_{4}, \neg x_{5}\}} x_{4}$$

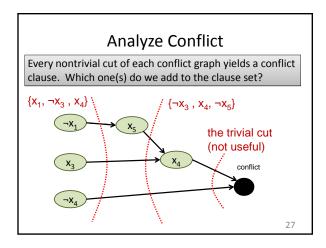
 $p = {\neg x_1, x_3, \neg x_4}$

Implication Graph

May contain several sources of conflicts.

Implication Graph The conflict graph for conflict variable x_5 (solid edges). x_5 x_4 x_5 x_4 x_5 x_8 x_8 x_8 x_8 x_8





What Clauses to Learn?

- Can't keep everything -- space is a major bottleneck in practice.
- Various heuristics:
 - First unique implication point
 - First new cut
 - Decision cut
 - **–** ...

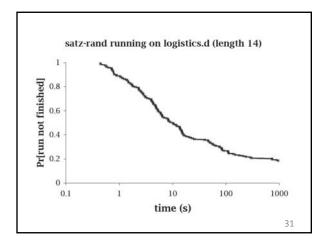
28

Backtracking/Backjumping

- For each x in p, maintain:
 - Int depth(x): number of literals in p immediately after x was added to p.
 - Bool flipped(x): did we try the partial assignment with ¬x and all literals at lower depth than x in p?
- If we can derive a conflict clause C containing only x and literals of lower depth in p, then we can backtrack to x:
 - delete all literals with depth > depth(x) from p,
 - If flipped(x) = true, then delete x as well.
- Other heuristics backtrack more aggressively. 29

Random Restarts

- Restart: keep learned clauses, but throw away p, resample random bits, and start again.
- Essentially a very aggressive backjump.
- Can help performance a lot.
 - Run time distributions appear to be heavy-tailed.



Random Restarts: Heuristics

- Fixed cutoff (always restart after T seconds)
- Cutoff after k restarts is some function f(k)
- Luby et. al. universal restart strategy for f(k)
- f(k) = c*k, c^k, ...
- Restart policies based on predictive models of solver behavior:
 - Bayesian approaches, Dynamic Programming,
 - Online submodular function maximization*

32

Embellishing DPLL

- Branch Selection Heuristics
- Clause Learning
- · Backjumping heuristics
- Watched literals
- Randomized Restarts
- · Symmetry breaking
- More powerful proof systems
- ...

33

Watched Literals

· Clever lazy data structure

Maintain two literals {x,y} per active clause C that are not set to false. ("C watches x,y")

If x set to true, do nothing If x set to false,

For each C watching x,
either find another variable for C to watch,
or do unit-propagation on C as appropriate.
For each previously active C' containing ¬x,
set C' to watch ¬x

If x is unset, do nothing (!)

Watched Literals

- Helps quickly find if a clause is satisfied (just look at its watched literals)
- Helps quickly identify clauses ripe for unitpropagation.
- "now a standard method used by most SAT solvers for efficient constraint propagation"
 - Gomes et. al. "Satisfiability Solvers"
- Partially explains why deduce step is typically just iterated unit-propagation

Symmetry Breaking

- Symmetry is common in practice (e.g., identical trucks in vehicle routing)
- SAT encoding throws away this info.
- Symmetry is useful for some proofs:
 - e.g., Pigeon-hole principle: Impossible to place (n+1) birds into n bins, such that each bin gets at most one bird.

Pigeon Hole Principle

- Exponentially long proofs via resolution.
- Polynomially long proofs via cutting planes

Binary var x(i,j) = assign bird i to bin j. 1) Each bird i gets a bin: $\sum_{(bins \ j)} x(i,j) = 1$ 2) Each bin j has capacity one: $\sum_{(birds \ i)} x(i,j) \le 1$

Summing (1) over birds: $\sum_{\{birds\ i\}} \sum_{\{birds\ i\}} x(i,j) = n+1$ Summing (2) over bins: $\sum_{\{birds\ i\}} \sum_{\{birds\ i\}} x(i,j) \le n$ Combine these to get $0 \le -1$.

Symmetry Breaking

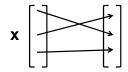
- Symmetries provided as part of input, or automatically detected (typically via graph isomorphism)
- Impose lexicographically minimal constraints
- Simple case: If {x_i : i = 1,2,..., k} are all interchangeable, add constraints (x_i v ¬x_j) for all i < j.

"If there's a solution with r of k vars set true, let them be x_1 through x_r "

38

Symmetry Breaking

- Order the variables, imagine assignment as a vector x.
- Identify permutations π on variables, such that if p is a satisfying assignment, then $p \bullet \pi$ is.
- Add constraints $x \le x^{\pi}$



Χ^T

Example: $\pi = (2, 1, 3)$

39

Other Proof Systems

- Truth Tables
- Frege Systems (includes resolution as a special case)
- Extended Resolution: Add new vars
- Resolution w/symmetry detection
- Geometric systems (infer cutting planes)
- ...

40

Incomplete Algorithms

- Returns satisfying assignment or FAILURE
- Based on heuristic search for a solution
- Faster than complete algorithms for many classes of satisfiable instances.
- Examples:
 - GSAT, WalkSAT,
 - Survey Propagation/Belief Propagation
 - Local search algs, Simulated Annealing, ILP, ...

11

Greedy-SAT

GSAT(formula F)

For(r = 0 to MAX-ROUNDS)

Pick random assignment p.

For (t=0 to MAX-FLIPS)

If p satisfies F, return p;

Else

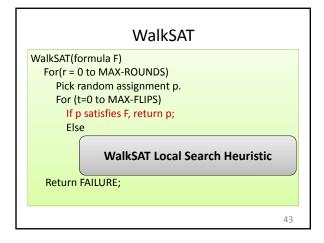
Find the variable v that if flipped maximizes the increase in satisfied clauses of F.

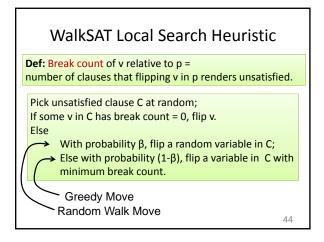
Flip(v);

Return FAILURE;

Flip(boolean v)

V = ¬V;

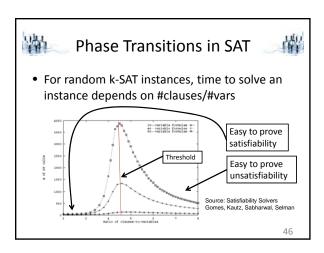




Survey Propagation

- Derived from the cavity method in statistical physics.
- Like DPLL with a special branching heuristic: belief-propagation on objects related to SAT solutions ("covers")
- Works really well in practice on some random instances unclear why.

45



Backdoor Sets

- Given a polynomial time subsolver A and formula F, a set S of variables is a strong backdoor if, whenever the vars in S are fixed by partial assignment p, A solves F|_p.
- Some real-world instances of SAT have small backdoor sets (e.g., < 1% of vars).
- Useful in explaining success of certain solvers and restart policies

47

Model Counting

- Count # of solutions (#P-Complete)
- One idea:
 - Add random parity constraints, until unsatisfiable
 - Each parity constraint eliminates ~1/2 of the solutions.
 - Add k constraints → ~2^(k-1) solutions

Encoding Problems in SAT

- If x then y: {¬x, y}
- $z = (x \text{ and } y): \{x, \neg z\}, \{y, \neg z\}, \{\neg x, \neg y, z\}$
- $z = (x \text{ XOR } y): \{\neg x, \neg y, \neg z\}, \{x, y, \neg z\}, \{\neg x, y, z\}, \{x, \neg y, z\}$
- Planning instances:
 - Constrain length of the plan.
- bit-wise encoding of arithmetic
- ...