15-853: Algorithms in the Real
World

Suffix Trees

15-853 Page 1

Exact String Matching

+ Given a text T of length m and pattern P of length n
*+ "Quickly" find an occurrence (or all occurrences) of

PinT

+ A Nadive solution:

Compare P with TTi...i+n] for all i --- O(nm) time

+ How about O(h+m) time? (Knuth Morris Pratt)
*+ How about O(m) preprocessing time and

O(n) search time?

15-853 Page 2

Suffix Trees

* Preprocess the text in O(m) time and search in
O(n) time

- Idea:

- Construct a tree containing all suffixes of text
along the paths from the root to the leaves

- For search, just follow the appropriate path

15-853 Page 3

Suffix Trees

A suffix tree for the string xab xac

Search for the string ab x

15-853 Page 4




Constructing Suffix trees

* Naive O(m?) algo
+ For every i, add the suffix S[i .. m] to the current
tree

xabxac 1

15-853 Page 5

Constructing Suffix trees

* Naive O(m?) algo
+ For every i, add the suffix S[i .. m] to the current

tree

15-853 Page 6

Constructing Suffix trees

* Naive O(m?) algo
+ For every i, add the suffix S[i .. m] to the current
tree

15-853 Page 7

Ukkonen's linear-time algorithm

+ We will start with an O(m?3) algorithm and then

give a series of improvements

+ Instage i, we construct a suffix tree T, for S[1..i]

+ Incrementing T, to T, naively takes O(i2) time

because we insert each of the i suffixes

+ Thus a total of O(m3) time

15-853 Page 8




Going from T, to T,

+ In the j*h substage of stage i+1, we insert S[j..i+1]
into T;. Let S[j..i] = B.

+ Three cases

- Rule 1: The path B ends on a leaf = add S[i+1] to the
label of the last edge

- Rule 2: The path B continues with characters other than
S[i+1] = create a new leaf node and split the path
labeled B

- Rule 3: A path labeled B S[i+1] already exists = do
nothing.

15-853 Page 9

Idea #1: Suffix Links

*+ Ineach substage, we first search for some string

in the tree and then insert a new node/edge/label

+ Can we speed up looking for strings in the tree?

+ Inany substage, we look for a suffix of the

strings searched in previous substages

* Idea: Put a pointer from an internal node labeled

xo o the node labeled o

+ Such a link is called a "Suffix Link"

15-853 Page 10

Idea #1: Suffix Links

Add the letter d

15-853 Page 11

Suffix Links - Bounding the time

+ Steps in each substage

- 6o up 1link fo the nearest internal node
- Follow a suffix link to the suffix node
- Follow the path for the remaining string

+ First two steps together make up O(m) in each

stage

+ The third step follows only as many links as the

length of the string S[1 .. ]

+ Thus the total time per stage is O(m)

15-853 Page 12




Maintaining Suffix Links

+ Whenever a node labeled xa is created, in the

following substage a node labeled a. is created.
Why?

+ When a new node is created, add a suffix link

from it to the root, and if required, add a suffix
link from its predecessor to it.

15-853 Page 13

Going from O(m?) to O(m)

+ Can we even hope to do better than O(m2)?
+ Size of the tree itself can be O(m?)

+ But notice that there are only 2m edges! - Why?

+ Idea: represent labels of edges as intervals
+ Can easily modify the entire process to work on

intervals

15-853 Page 14

Idea #2 : Getting rid of Rule 3

+ Recall Rule 3: A path labeled SJ[j .. i+1] already
exists = do nothing.

+ If S[j .. i+1] already exists, then S[j+1 .. i+1] exists
too and we will again apply Rule 3 in the next
substage

* Whenever we encounter Rule 3, this stage is over -
skip to the next stage.

15-853 Page 15

Idea #3 : Fast-forwarding Rules 1 & 2

+ Rule 1 applies whenever a path ends in a leaf

+ Note that a leaf node always stays a leaf node -

the only change is to append the new character to
its edge using Rule 1

+ An application of Rule 2 in substage j creates a

new leaf node

This node is then accessed using Rule 1 in substage
j inall the following stages

15-853 Page 16




Idea #3 : Fast-forwarding Rules 1 & 2

Fast-forward Rule 1 and 2

- Whenever Rule 2 creates a node, instead of
labeling the last edge with only one character,
implicitly label it with the entire remaining
suffix

+ Each leaf edge is labeled only once!

15-853 Page 17

i+1

i+2

i+3

i
31
iz

2]

2]

j2]
i3

Loop Structure

rule 2 (follow suffix link)
rule 2 (follow suffix link)

rule 3
* Rule 2 gets applied once
per
rule 3 * Rule 3 gets applied once
peri
rule 3
rule 2
rule 3
15-853 Page 18

Another Way to Think About It

S | \
T T
insert finger search finger
increment when S[j..i] increment when S[j..i]
not in tree (rule 2) in tree (rule 3)

1) insert S[j..n]into tree
by branching at S[j..i-1]

2) create suffix pointer -
to new node at S[j..i-1] Invariants:

3) if there 'i°"if, - 1. jis never after i
use parent suffix pointer A,
to move finger to j+1 2. ;?1 [“II' -}:\'él_':_lr":ealways

15-853 Page 19

Leaf

edge labels are updated by using a
variable to denote the end of the interval

15-853 Page 20




Complexity Analysis

* Rule 3 is used only once in every stage

* For every j, Rule 1 & 2 are applied only once in the
jth substage of all the stages.

+ Each application of a rule takes O(1) steps
* Other overheads are O(1) per stage

+ Total time is O(m)

15-853 Page 21

Extending to multiple lists

+ Suppose we want to match a pattern with a

dictionary of k strings

+ Concatenate all the strings (interspersed with

special characters) and construct a common suffix
tree

+ Time taken = O(km)
+ Unneccesarily complicated tree; needs special

characters

15-853 Page 22

Multiple lists - Better algorithm

+ First construct a suffix tree on the first string,
then insert suffixes of the second string and so

on

+ Each leaf node should store values corresponding
to each string

+ O(km) as before

15-853 Page 23

Longest Common Substring

+ Find the longest string that is a substring of both

S;and S,

+ Construct a common suffix tree for both
* Any node that has leaf nodes labeled by S; and S,

in the subtree rooted at it gives a common
substring

+ The "deepest” such node is the required substring
+ Can be found in linear time by a tree traversal.

15-853 Page 24




Common substrings of M strings

+ Given M strings of total length n, find for every k,
the length |, of the longest string that is a
substring of at least k of the strings

+ Construct a common suffix tree

+ For every internal node, find the number of
distinctly labeled leaves in the subtree rooted at
the node

* Report |, by a single tree traversal

+ O(Mn) time - not linear!

15-853 Page 25

Lempel-Ziv compression

+ Recall that at each stage, we output a pair (p;, |;) where

S[p; .. pitli] = Sli .. i+l;]
Find all pairs (p; ;) in linear time

+ Construct a suffix tree for S
+ Label each internal node with the minimum of labels of

all leaves below it - this is the first place in S where it
occurs. Call this label c,.

For every i, search for the string S[i .. m] stopping just
before c,>i. This gives us |, and p;.

15-853 Page 26




