
1

15-853 Page 1

15-853: Algorithms in the Real
World

Suffix Trees

15-853 Page 2

Exact String Matching

• Given a text T of length m and pattern P of length n
• “Quickly” find an occurrence (or all occurrences) of

P in T

• A Naïve solution:
Compare P with T[i…i+n] for all i --- O(nm) time

• How about O(n+m) time? (Knuth Morris Pratt)
• How about O(m) preprocessing time and

O(n) search time?

15-853 Page 3

Suffix Trees

• Preprocess the text in O(m) time and search in
O(n) time

• Idea:
– Construct a tree containing all suffixes of text

along the paths from the root to the leaves
– For search, just follow the appropriate path

15-853 Page 4

Suffix Trees

x a b x a c
ca

b
a

x
c

ccc
a

x
b

A suffix tree for the string x a b x a c

3 6
5 2

4

1

Search for the string a b x

2

15-853 Page 5

Constructing Suffix trees

• Naive O(m2) algo
• For every i, add the suffix S[i .. m] to the current

tree

c
a

x
b

3

a
b

a
x

c
2

x a b x a c 1

15-853 Page 6

Constructing Suffix trees

• Naive O(m2) algo
• For every i, add the suffix S[i .. m] to the current

tree

x a b x a c
ca

b
a

x
cc

a
x

b

3 2

4

1

15-853 Page 7

Constructing Suffix trees

• Naive O(m2) algo
• For every i, add the suffix S[i .. m] to the current

tree

x a b x a c
ca

b
a

x
c

c
c

a
x

b

3

c

6
5 2

4

1

15-853 Page 8

Ukkonen’s linear-time algorithm

• We will start with an O(m3) algorithm and then
give a series of improvements

• In stage i, we construct a suffix tree Ti for S[1..i]

• Incrementing Ti to Ti+1 naively takes O(i2) time
because we insert each of the i suffixes

• Thus a total of O(m3) time

3

15-853 Page 9

Going from Ti to Ti+1

• In the jth substage of stage i+1, we insert S[j..i+1]
into Ti. Let S[j..i] = β.

• Three cases
– Rule 1: The path β ends on a leaf ⇒ add S[i+1] to the

label of the last edge
– Rule 2: The path β continues with characters other than

S[i+1] ⇒ create a new leaf node and split the path
labeled β

– Rule 3: A path labeled β S[i+1] already exists ⇒ do
nothing.

15-853 Page 10

Idea #1 : Suffix Links

• In each substage, we first search for some string
in the tree and then insert a new node/edge/label

• Can we speed up looking for strings in the tree?

• In any substage, we look for a suffix of the
strings searched in previous substages

• Idea: Put a pointer from an internal node labeled
xα to the node labeled α

• Such a link is called a “Suffix Link”

15-853 Page 11

Idea #1 : Suffix Links

x a b x a c

ca

b

a
x

c

c
c

a

x

b

c

d SP 1

Add the letter d

d SP 2d
SP 3

d SP 4

d
SP 5d

SP 6

15-853 Page 12

Suffix Links – Bounding the time

• Steps in each substage
– Go up 1 link to the nearest internal node
– Follow a suffix link to the suffix node
– Follow the path for the remaining string

• First two steps together make up O(m) in each
stage

• The third step follows only as many links as the
length of the string S[1 .. i]

• Thus the total time per stage is O(m)

4

15-853 Page 13

Maintaining Suffix Links

• Whenever a node labeled xα is created, in the
following substage a node labeled α is created.

Why?

• When a new node is created, add a suffix link
from it to the root, and if required, add a suffix
link from its predecessor to it.

15-853 Page 14

Going from O(m2) to O(m)

• Size of the tree itself can be O(m2)

• Can we even hope to do better than O(m2)?

• But notice that there are only 2m edges! – Why?

• Idea: represent labels of edges as intervals
• Can easily modify the entire process to work on

intervals

15-853 Page 15

Idea #2 : Getting rid of Rule 3

• Recall Rule 3: A path labeled S[j .. i+1] already
exists ⇒ do nothing.

• If S[j .. i+1] already exists, then S[j+1 .. i+1] exists
too and we will again apply Rule 3 in the next
substage

• Whenever we encounter Rule 3, this stage is over –
skip to the next stage.

15-853 Page 16

Idea #3 : Fast-forwarding Rules 1 & 2

• Rule 1 applies whenever a path ends in a leaf

• Note that a leaf node always stays a leaf node –
the only change is to append the new character to
its edge using Rule 1

• An application of Rule 2 in substage j creates a
new leaf node
This node is then accessed using Rule 1 in substage
j in all the following stages

5

15-853 Page 17

Idea #3 : Fast-forwarding Rules 1 & 2

• Fast-forward Rule 1 and 2
– Whenever Rule 2 creates a node, instead of

labeling the last edge with only one character,
implicitly label it with the entire remaining
suffix

• Each leaf edge is labeled only once!

15-853 Page 18

Loop Structure

• Rule 2 gets applied once
per j

• Rule 3 gets applied once
per i

i

i+1

i+2

i+3

j

j+2
j+1

rule 2 (follow suffix link)
rule 2 (follow suffix link)
rule 3

j+2 rule 3

j+2 rule 3

j+2 rule 2
j+3 rule 3

15-853 Page 19

Another Way to Think About It

insert finger
increment when S[j..i]

not in tree (rule 2)
1) insert S[j..n] into tree

by branching at S[j..i-1]
2) create suffix pointer

to new node at S[j..i-1]
if there is one

3) use parent suffix pointer
to move finger to j+1

search finger
increment when S[j..i]

in tree (rule 3)

j i
S

Invariants:
1. j is never after i
2. S[j..i-1] is always

in the tree

15-853 Page 20

An example

x

ca

b

b

c

b

c

x a b x a c a

x
x

x

a
a

a

c
c

c

Leaf edge labels are updated by using a
variable to denote the end of the interval

1

4

2
5

6
3

6

15-853 Page 21

Complexity Analysis

• Rule 3 is used only once in every stage
• For every j, Rule 1 & 2 are applied only once in the

jth substage of all the stages.
• Each application of a rule takes O(1) steps
• Other overheads are O(1) per stage

• Total time is O(m)

15-853 Page 22

Extending to multiple lists

• Suppose we want to match a pattern with a
dictionary of k strings

• Concatenate all the strings (interspersed with
special characters) and construct a common suffix
tree

• Time taken = O(km)
• Unneccesarily complicated tree; needs special

characters

15-853 Page 23

Multiple lists – Better algorithm

• First construct a suffix tree on the first string,
then insert suffixes of the second string and so
on

• Each leaf node should store values corresponding
to each string

• O(km) as before

15-853 Page 24

Longest Common Substring

• Find the longest string that is a substring of both
S1 and S2

• Construct a common suffix tree for both
• Any node that has leaf nodes labeled by S1 and S2

in the subtree rooted at it gives a common
substring

• The “deepest” such node is the required substring
• Can be found in linear time by a tree traversal.

7

15-853 Page 25

Common substrings of M strings

• Given M strings of total length n, find for every k,
the length lk of the longest string that is a
substring of at least k of the strings

• Construct a common suffix tree
• For every internal node, find the number of

distinctly labeled leaves in the subtree rooted at
the node

• Report lk by a single tree traversal
• O(Mn) time – not linear!

15-853 Page 26

Lempel-Ziv compression

• Recall that at each stage, we output a pair (pi, li) where
S[pi .. pi+li] = S[i .. i+li]

• Find all pairs (pi,li) in linear time

• Construct a suffix tree for S
• Label each internal node with the minimum of labels of

all leaves below it – this is the first place in S where it
occurs. Call this label cv.

• For every i, search for the string S[i .. m] stopping just
before cv≥i. This gives us li and pi.

