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15-853:Algorithms in the Real World

Linear and Integer Programming I
– Introduction
– Geometric Interpretation
– Simplex Method

15-853 Page2

Linear and Integer Programming
Linear or Integer programming

minimize     z = cTx cost or objective function
subject to  Ax = b      equalities

x ≥ 0         inequalities
c ∈ ℜn,   b ∈ ℜm,    A ∈ ℜn x m

Linear programming:
x ∈ ℜn       (polynomial time)

Integer programming:
x ∈ Ζn       (NP-complete)

Extremely general framework, especially IP
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Related Optimization Problems
Unconstrained optimization

min{f(x) : x ∈ ℜn}
Constrained optimization

min{f(x) : ci(x) ≤ 0, i ∈ I, cj(x) = 0, j ∈ E}
Quadratic programming

min{1/2xTQx + cTx : ai
Tx ≤ bi, i ∈ I, ai

Tx = bj, j ∈ E}
Zero-One programming

min{cTx : Ax = b, x ∈ {0,1}n, c ∈ Rn, b ∈ ℜm}
Mixed Integer Programming

min{cTx : Ax = b, x ≥ 0, xi ∈ Ζ, i ∈ I, xr ∈ ℜ, r ∈ R}
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How important is optimization?
• 50+ packages available
• 1300+ papers just on interior-point methods
• 100+ books in the library
• 10+ courses at most Universities
• 100s of companies
• All major airlines, delivery companies, trucking 

companies, manufacturers, …
make serious use of optimization.
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Linear+Integer Programming Outline
Linear Programming

– General formulation and geometric interpretation
– Simplex method
– Ellipsoid method
– Interior point methods

Integer Programming
– Various reductions of NP hard problems
– Linear programming approximations
– Branch-and-bound + cutting-plane techniques
– Case study from Delta Airlines
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Applications of Linear Programming
1. A substep in most integer and mixed-integer 

linear programming (MIP) methods
2. Selecting a mix: oil mixtures, portfolio selection
3. Distribution: how much of a commodity should be 

distributed to different locations.
4. Allocation: how much of a resource should be 

allocated to different tasks
5. Network Flows
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Linear Programming for Max-Flow

Create two variables per edge: 

Create one equality per vertex:
x1 + x2 + x3’ = x1’ + x2’ + x3

and two inequalities per edge:
x1 ≤ 3,  x1’ ≤ 3

add edge x0 from out to in
maximize x0

in out

1

2
3

7

6

2
3

5
7

x1
x3

x2

x1 x1’
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In Practice
In the “real world” most problems involve at least 

some integral constraints.
• Many resources are integral
• Can be used to model yes/no decisions (0-1 

variables)
Therefore “1. A subset in integer or MIP 

programming” is the most common use in practice
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Algorithms for Linear Programming
• Simplex (Dantzig 1947)
• Ellipsoid (Kachian 1979) 

first algorithm known to be polynomial time
• Interior Point

first practical polynomial-time algorithms
– Projective method (Karmakar 1984)
– Affine Method (Dikin 1967)
– Log-Barrirer Methods (Frisch 1977, Fiacco

1968, Gill et.al. 1986)
Many of the interior point methods can be applied to 

nonlinear programs.   Not known to be poly. time
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State of the art
1 million variables
10 million nonzeros
No clear winner between Simplex and Interior Point

– Depends on the problem
– Interior point methods are subsuming more and 

more cases
– All major packages supply both

The truth: the sparse matrix routines, make or 
break both methods.

The best packages are highly sophisticated.
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Comparisons, 1994

too bigwon’t run45,870.24color

858.01,943.83,091.1energy

37,627.3108,015.071,292.5airfleet

1,264.216,172.27,182.6crew

3,240.889,890.957,916.3maintenace

2,348.01,911.41,354.2forestry

too bigwon’t run18,568.0distribution

560.662.829.5binpacking

Barrier + 
crossover

Simplex 
(dual)

Simplex 
(primal)problem
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Formulations
There are many ways to formulate linear programs:

– objective (or cost) function
maximize cTx, or
minimize cTx, or
find any feasible solution

– (in)equalities
Ax ≤ b, or
Ax ≥ b, or
Ax = b, or any combination

– nonnegative variables
x ≥ 0, or not

Fortunately it is pretty easy to convert among forms
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Formulations
The two most common formulations:

minimize     cTx
subject to  Ax ≥ b

x ≥ 0

minimize     cTx
subject to  Ax = b

x ≥ 0

slack
variables

e.g.

7x1 + 5x2 ≥ 7
x1, x2 ≥ 0

7x1 + 5x2 - y1 = 7
x1, x2, y1 ≥ 0

y1

More on slack variables later.

1 2
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Geometric View
A polytope in n-dimensional space

Each inequality corresponds to a half-space.
The “feasible set” is the intersection of the half-

spaces.
This corresponds to a polytope
The optimal solution is at a corner.

Simplex moves around on the surface of the polytope
Interior-Point methods move within the polytope
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Geometric View

An intersection of 
5 halfspaces

minimize:

subject to:

≤ 10
≤ 18
≤ 4

x1, x2 ≥ 0
x2

2x1 + x2

x1 – 2x2

z = -2x1 - 3x2

x2 · 10

x1 – 2x2 ≤ 4

x1

x2

Feasible
Set Corners

Objective
Function
-2x1 – 3x2

2x1 + x2 ≤ 18
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Notes about higher dimensions
For n dimensions and no degeneracy
Each corner (extreme point) consists of:

– n intersecting n-1 dimensional hyperplanes
e.g. 3, 2d planes in 3d

– n intersecting edges
Each edge corresponds to moving off of one 

hyperplane (still constrained by n-1 of them)
Simplex will move from corner to corner along the edges
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Optimality and Reduced Cost
The Optimal solution must include a corner. 
The Reduced cost for a hyperplane at a corner is the 

cost of moving one unit away from the plane along 
its corresponding edge.

1 ei
z

pi

ri = z ⋅ ei

For minimization, if all reduced cost are non-
negative, then we are at an optimal solution.   

Finding the most negative reduced cost is a heuristic 
for choosing an edge to leave on
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x1

x2

z = -2x1 – 3x2

Reduced cost example
In the example the 
reduced cost of leaving 
the plane x1 is
(-2,-3) ⋅ (2,1) = -7
since moving one unit 
off of x1 will move us 
(2,1) units along the 
edge.  We take the dot 
product of this and the 
cost function.(0,1)

(2,1)

15-853 Page19

Simplex Algorithm
1. Find a corner of the feasible region
2. Repeat

A. For each of the n hyperplanes intersecting at 
the corner, calculate its reduced cost

B. If they are all non-negative, then done
C. Else, pick the most negative reduced cost

This is called the entering plane
D. Move along corresponding edge (i.e. leave that 

hyperplane) until we reach the next corner 
(i.e. reach another hyperplane)
The new plane is called the departing plane
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x1

x2

z = -2x1 – 3x2

Start

Example

Entering

Departing

Step 1

Step 2
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Simplifying
Problem:

– The Ax ≤ b constraints not symmetric with the 
x ≥ 0 constraints.
We would like more symmetry.

Idea:
– Make all inequalities of the form x ≥ 0.

Use “slack variables” to do this.
Convert into form: minimize     cTx

subject to  Ax = b
x ≥ 0

15-853 Page22

Standard and Slack Form

x1

x2

x4

x3

x5

x1

x2

x2 ≤ 10

x1 – 2x2 ≤ 4

2x1 + x2 ≤ 18

Standard Form Slack Form
minimize     cTx
subject to  Ax ≤ b

x ≥ 0

minimize     cTx’
subject to  A’x’ = b

x’ ≥ 0

slack
variables

|A| = m x n 
i.e. m equations, n variables

|A’| = m x (m+n) 
i.e. m equations, m+n variables

2x1 + x2 + x4 = 18

15-853 Page23

Example, again

minimize:

subject to:

= 10
= 18
= 4

x1, x2, x3, x4, x5 ≥ 0
x2 + x5

2x1 + x2 + x4

x1 – 2x2 + x3

z = -2x1 - 3x2

x1

x2

x1

x2

x4

x3

x5

The equality constraints impose a 2d plane embedded in 
5d space, looking at the plane gives the figure above
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Using Matrices
If before adding the slack variables A has size m x n 

then after it has size m x (n + m)
m can be larger or smaller than n

m

n m

A =
1 0 0 …
0 1 0 …
0 0 1 …
…

Assuming rows are independent, the solution space of 
Ax = b is a n dimensional subspace. 

slack vrs.
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Gauss-Jordan Elimination

0
0
0
0
1
0 ⎪

⎪
⎩

⎪⎪
⎨

⎧

=

≠−
=

li
A
A

li
A
AAA

B

lk

lj

lk

ik
ljij

ij

Gauss-Jordan elimination

j

i
l

k

k

l ijA
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Simplex Algorithm, again
1. Find a corner of the feasible region
2. Repeat

A. For each of the n hyperplanes intersecting at 
the corner, calculate its reduced cost

B. If they are all non-negative, then done
C. Else, pick the most negative reduced cost

This is called the entering plane
D. Move along corresponding line (i.e. leave that 

hyperplane) until we reach the next corner 
(i.e. reach another hyperplane)
The new plane is called the departing plane
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Simplex Algorithm (Tableau Method)

r

b’

-z

FI

0
Basic Vars. Free Variables reduced costs

n

current cost

m

This form is called a Basic Solution
• the n “free” variables are set to 0
• the m “basic” variables are set to b’
A valid solution to Ax = b if reached using Gaussian 

Elimination
Represents n intersecting hyperplanes
If feasible (i.e. b’ ≥ 0), then the solution is called 

a Basic Feasible Solution and is a corner of the 
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Corner

x1

-2
0
2
1

x2

-3
1
1
-2

x5x4x3

0000
10100
18010
4001

x1

x2

x4

x3

x5

free variablesbasic variables
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Corner

x1

-3.5
.5

2.5
-.5

x3

-3
1
1
-1

x5x4x2

-6000
12100
20010
-2001

x1

x2

x4

x3

x5
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Corner

x3

2
0
-2
1

x2

-7
1
5
-2

x5x4x1

8000
10100
10010
4001

x1

x2

x4

x3

x5
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Corner

x3

-.8
.4
-.4
.2

x4

1.4
-.2
.2
.4

x5x2x1

22000
8100
2010
8001

x1

x2

x4

x3

x5
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Corner

x4

1
0
.5
.5

x2

-2
1
.5

-2.5

x5x1x3

18000
10100
9010
-5001

x1

x2

x4

x3

x5

Note that in general there are 
n+m choose m corners
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Simplex Method Again
Once you have found a basic feasible solution (a 

corner), we can move from corner to corner by 
swapping columns and eliminating.

ALGORITHM
1. Find a basic feasible solution
2. Repeat

A. If r (reduced cost ) ≥ 0 , DONE
B. Else, pick column with most negative r
C. Pick row with least positive b’/(selected column)
D. Swap columns
E. Use Gaussian elimination to restore form 15-853 Page34

Tableau Method
A. If r are all non-negative then done

r

b’

z

FI

0
Basic
Variables

Free Variables
values are 0 reduced costs

if all ≥ 0 then done

n

current cost
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Tableau Method
B. Else, pick the most negative reduced cost

This is called the entering plane

r

b’

z

FI

0

n

min{ri}
entering variable
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Tableau Method
C. Move along corresponding line (i.e. leave that 

hyperplane) until we reach the next corner (i.e. 
reach another hyperplane)
The new plane is called the departing plane

r

b’

z

FI

0
1

departing variable

min positive bj’/uj

u
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Tableau Method
D. Swap columns

E. Gauss-Jordan elimination

r

b’

z
x

swap

ri+1 zi+1

Fi+1I

0

bi+1’

x

x
x

x

No longer in
proper form

Back to
proper form
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Example

z = -2x1 – 3x2

x2 + x5 = 10
2x1 + x2 + x4 = 18
x1 – 2x2 + x3 = 4

x5x4x3x2x1

0000-3-2
1010010
1801012
4001-21

x1

-2
0
2
1

x2

-3
1
1
-2

x5x4x3

0000
10100
18010
4001

x1

x2

x4

x3

x5

x1 = x2 = 0 (start)

Find corner
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Example

x1

-2
0
2
1

x2

-3
1
1
-2

x5x4x3

0000
10100
18010
4001

bj/vj

10
18
-2

x1

-2
0
2
1

x2

-3
1
1
-2

x5x4x3

0000
10100
18010
4001

min
positive

x1

x2

x4

x3

x5
10

18

-2
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Example

x5

0
1
0
0

x2

-3
1
1
-2

x1

-2
0
2
1

x4x3

000
1000
1810
401

x5

3
1
-1
2

x2

0
1
0
0

x1

-2
0
2
1

x4x3

3000
1000
810

2401
Gauss-Jordan
Elimination

swap

x1

x2

x4

x3

x5
10

18

-2
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Example

x5

3
1
-1
2

x2

0
1
0
0

x1

-2
0
2
1

x4x3

3000
1000
810

2401

x1

x2

x4

x3

x5
10

18

-2

1
4

24

x5

3
1
-1
2

x2

0
1
0
0

x1

-2
0
2
1

x4x3

3000
1000
810

2401
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Exampleswap

x1

x2

x4

x3

x5
10

18

-2

x5

3
1
-1
2

x2

0
1
0
0

x4

0
0
1
0

x1x3

30-20
1000
820

2411

x5

2
1

-.5
2.5

x2

0
1
0
0

x4

1
0
.5
-.5

x1x3

3800
1000
410

2001
Gauss-Jordan
Elimination
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Simplex Concluding remarks
For dense matrices, takes O(n(n+m)) time per 

iteration
Can take an exponential number of iterations.
In practice, sparse methods are used for the 

iterations.
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Duality
Primal (P):

maximize    z  = cTx
subject to  Ax ≤ b

x ≥ 0   (n equations, m variables)
Dual (D):

minimize     z = yTb
subject to  ATy ≥ c

y ≥ 0   (m equations, n variables)

Duality Theorem:  if x is feasible for P and y is 
feasible for D, then cx ≤ yb
and at optimality cx = yb.
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Duality (cont.)

feasible solutions for 
Dual (maximization)

feasible solutions for 
Primal (minimization)

Optimal solution for both

Quite similar to duality of Maximum Flow and
Minimum Cut.

Useful in many situations.
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Duality Example

Solution to both is 38 (x1 = 4, x2 =10), (y1 =0, y2 =1, y3 =2)

Primal:
maximize:

subject to:

≤ 10
≤ 18
≤ 4

x1, x2 ≥ 0
x2

2x1 + x2

x1 – 2x2

z = 2x1 + 3x2

Dual:
minimize:

subject to:

≥ 3
≥ 2

y1, y2, y3 ≥ 0
-2y1 + Y2 + Y3

y1 + 2y2

z = 4y1 + 18y2 + 10y3


