15-853:Algorithms in the Real World

Linear and Integer Programming I
- Introduction
- Geometric Interpretation
- Simplex Method
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Linear and Integer Programming

Linear or Integer programming
minimize z=c'x cost or objective function
subject to Ax=b  equalities
x>0 inequalities
ceR", beRM Ae Rnxm
Linear programming:
x € R" (polynomial time)
Integer programming:
x € Z" (NP-complete)
Extremely general framework, especially IP
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Related Optimization Problems

Unconstrained optimization

min{f(x) : x € ®"}
Constrained optimization

min{f(x) : ¢(x)<0,i eI, ¢c(x)=0,j e E}
Quadratic programming

min{1/2xTQx + c'™x :a'™x < b, i e I, qTx = bj,j e E}
Zero-One programming

min{c™x: Ax=b, x € {0,1}", c € R", b € B’M}
Mixed Integer Programming

min{c™x: Ax=b,x>0,x,eZ,ieI x.eR,reR}
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How important is optimization?

+ B0+ packages available

+ 1300+ papers just on interior-point methods
+ 100+ books in the library

+ 10+ courses at most Universities

+ 100s of companies

+ All major airlines, delivery companies, trucking
companies, manufacturers, ...
make serious use of optimization.
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Linear+Integer Programming Outline

Linear Programming
- General formulation and geometric interpretation
- Simplex method
- Ellipsoid method
- Interior point methods
Integer Programming
- Various reductions of NP hard problems
- Linear programming approximations
- Branch-and-bound + cutting-plane techniques
- Case study from Delta Airlines
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Applications of Linear Programming

1. A substep in most integer and mixed-integer
linear programming (MIP) methods

2. Selecting a mix: oil mixtures, portfolio selection

3. Distribution: how much of a commodity should be
distributed to different locations.

4. Allocation: how much of a resource should be
allocated to different tasks

5. Network Flows
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Linear Programming for Max-Flow

6
Create two variables per edge: Xlox{

Create one equality per vertex:
Xq+ Xp + X3' = X{' + X, + X3 Xy
and two inequalities per edge:
X1 <3, X' <3
add edge x, from out to in
maximize X,
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In Practice

In the "real world” most problems involve at least
some integral constraints.

* Many resources are integral

+ Can be used to model yes/no decisions (0-1
variables)

Therefore "1. A subset in integer or MIP
programming” is the most common use in practice
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Algorithms for Linear Programming

- Simplex (Dantzig 1947)

+ Ellipsoid (Kachian 1979)
first algorithm known to be polynomial time

- Interior Point

first practical polynomial-time algorithms

- Projective method (Karmakar 1984)

- Affine Method (Dikin 1967)

- Log-Barrirer Methods (Frisch 1977, Fiacco

1968, Gill et.al. 1986)

Many of the interior point methods can be applied to
nonlinear programs. Not known to be poly. time
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State of the art

1 million variables

10 million nonzeros

No clear winner between Simplex and Interior Point
- Depends on the problem

- Interior point methods are subsuming more and
more cases

- All major packages supply both

The truth: the sparse matrix routines, make or
break both methods.

The best packages are highly sophisticated.
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Comparisons, 1994

roven | Smples | Sipmex [ s
binpacking 29.5 62.8 560.6
distribution 18,568.0 won't run too big
forestry 1,354.2 19114 2,348.0
maintenace 57,916.3 89,890.9 3,240.8
crew 7.182.6 16,172.2 1,264.2
airfleet 71,2925 108,015.0 37,627.3
energy 3,091.1 1,943.8 858.0
4color 45,870.2 won't run too big
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Formulations

There are many ways to formulate linear programs:
- objective (or cost) function
maximize c'x, or
minimize c'x, or
find any feasible solution
- (in)equalities
Ax<b,or
Ax=>Db, or
Ax = b, or any combination
- nonnegative variables
x >0, or not
Fortunately it is pretty easy to convert among forms
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Formulations

The two most common formulations:
1 2

minimize  cTx S|a(':kb| minimize ¢Tx

subject to Ax>b Yara es subject to Ax=b
x>0 x>0

eq.

7X1+5X227 Y1 7X1+5X2-y1=7

Xy, X, 20 Xy, Xz, Y120

More on slack variables later.
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Geometric View

A polytope in n-dimensional space
Each inequality corresponds to a half-space.

The “feasible set” is the intersection of the half-
spaces.

This corresponds to a polytope
The optimal solution is at a corner.

Simplex moves around on the surface of the polytope
Interior-Point methods move within the polytope
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Geometric View

minimize: Xe .10
.
Z= ‘2X1 = 3X2 \Q
subject to:
- <
X;=2x; <4 Feasible
21+ X, <18 Set Corners
x, <10
Objective
> J
X1, Xz 20 Function
-2y = 3X,
An intersection of

X1

5 halfspaces
P \x1-2x2S4 2%, + X, < 18
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Notes about higher dimensions

For n dimensions and no degeneracy
Each corner (extreme point) consists of:

- nintersecting n-1 dimensional hyperplanes
e.g. 3, 2d planes in 3d

- nintersecting edges

Each edge corresponds to moving of f of one
hyperplane (still constrained by n-1 of them)

Simplex will move from corner to corner along the edges
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Optimality and Reduced Cost

The Optimal solution must include a corner.

The Reduced cost for a hyperplane at a corner is the
cost of moving one unit away from the plane along
its corresponding edge.

Pi

For minimization, if all reduced cost are non-
negative, then we are at an optimal solution.

Finding the most negative reduced cost is a heuristic
for choosing an edge to leave on
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Reduced cost example

X2 In the example the
reduced cost of leaving

the plane x, is
(-2,-3)-(21)=-7

since moving ohe unit
of f of x; will move us
(2.1) units along the
edge. We take the dot
@.1) product of this and the

ont -~  cost function,
1

z=-2x%; - 3X,
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Simplex Algorithm

1. Find a corner of the feasible region

2. Repeat
A. For each of the n hyperplanes intersecting at
the corner, calculate its reduced cost
B. If they are all non-negative, then done

C. Else, pick the most negative reduced cost
This is called the entering plane

D. Move along corresponding edge (i.e. leave that
hyperplane) until we reach the next corner
(i.e. reach another hyperplane)

The new plane is called the departing plane
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Departing

Step 1

X1

Entering Start
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Simplifying

Problem:

- The Ax < b constraints not symmetric with the
x > 0 constraints.
We would like more symmetry.

Idea:
- Make all inequalities of the form x > 0.
Use "slack variables"” to do this.
Convert into form: |minimize c¢Tx
subject fo Ax=>b
x>0
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Standard and Slack Form

Standard Form

Slack Form

minimize  c¢Tx slack minimize ¢Tx'
: variables : o
subject fo Ax<b subject to A'X'=b
x=0 x>0
|[Al=mxn |A"] = m x (m+n)
i.e. m equations, n variables i.e. m equations, m+n variables
x, <10
2%+ X, <18 2x;+ Xy + X, =18
X; - 2%, < 4
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Example, again

X2
minimize: T
X
Z= '2X1 = 3XZ 2
subject to:
X{=2X,+ X3 =4
1 2723 — X3 X4
2X + X, + X4 =18
X2 + éi = 10 X3
XIIXZI 53/ 54! 5520 ?2
3+ 24/ 25 %

The equality constraints impose a 2d plane embedded in
5d space, looking at the plane gives the figure above
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Using Matrices

If before adding the slack variables A has size m x n
then after it has size m x (n + m)

m can be larger or smaller than n
L

100 .. ‘T

010..

A= 001. |m

l-slack vrs-|

Assuming rows are independent, the solution space of
Ax = b is a n dimensional subspace.
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Gauss-Jordan Elimination

K
| A

y I Gauss-Jordan elimination
T § A,—A,j% i
| 2 T A
- A
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Simplex Algorithm, again

1. Find a corner of the feasible region

2. Repeat

A. For each of the n hyperplanes intersecting at
the corner, calculate its reduced cost

B. If they are all non-negative, then done

C. Else, pick the most negative reduced cost
This is called the entering plane

D. Move along corresponding line (i.e. leave that
hyperplane) until we reach the next corner
(i.e. reach another hyperplane)
The new plane is called the departing plane
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Simplex Algorithm (Tableau Method)

\ n |

m { I F b’
current cost

0 r . -z

Basic Vars~— Free Variables\a‘\ reduced costs

This form is called a Basic Solution

* the n “free" variables are set to 0

* the m "basic” variables are set to b’

A valid solution fo Ax = b if reached using Gaussian
Elimination

Represents n intersecting hyperplanes

If feasible (i.e. b' > 0), tHeR*the solution is called "%

Corner

basic variables free variables

1 0 0 1 -2]4
T3 01 0 2 1]18
2 0 0 1 0 1]10
by x 0 0 0 -2 -3|0
i X3 X4 Xg X; X
X
X2
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Corner

1 0 0 1 -2|4
T 0O 1 0 -2 5|10
X5
0O 0 1 0 1]10
0O 0 0o 2 -7|8
TX1 o x,

X; X4 X5 X3 X

X
X2 /
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15-853

Corner
1 0 0 -5 -1]-2
s 0 1 0 25 1|20
X5
0 0t 5 1|12
e 0 0 0 -35 -3|-6
4 X, X4 X5 X; X3
X
X2
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Corner
1 0 0 2 4|8
T3 0 1 0 -4 2|2
2 0 0 1 4 -2|8
by s 0 0 0 -8 14|22
4 Xy Xy X5 Xz Xg
X
Xe
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Corner

10
18

Note that in general there are
n+m choose m corners
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Simplex Method Again

Once you have found a basic feasible solution (a
corner), we can move from corner to corner by
swapping columns and eliminating.

ALGORITHM
1. Find a basic feasible solution
2. Repeat
A. If r (reduced cost ) >0, DONE
B. Else, pick column with most negative r
C. Pick row with least positive b'/(selected column)
D. Swap columns
E. Use Gaussian elimination to restore form  pegess

Tableau Method

A. If r are all non-negative then done

\ |
\ n |

I F b'
current cost
0 ro. =
Basic Free Var'iaBies\
| Variables — values are O —|  reduced costs

if all > 0 then done
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Tableau Method

B. Else, pick the most negative reduced cost
This is called the entering plane

\ n ’l
I F b'
0 r z

min{r;}
entering variable
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Tableau Method

C. Move along corresponding line (i.e. leave that
hyperplane) until we reach the next corner (i.e.
reach another hyperplane)

The new plane is called the departing plane

u

I F b’ min positive b;/u,
L

0 r z

departing variable
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Tableau Method

D. Swap columns

X
X
X

No longer in
bl proper form

r

swap

E. Gauss-Jordan elimination

I Fin Back to
proper form
0 [
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Example
1 0 0 1 -2 4 "
0 1 o0 2 1|18
0 0 1 o0 1]10
0 0 0 -2 0 16+
X3 X4 X5 X; Xy
1 0 o0 1 -2|4 -2
0 1 o0 2 1|18 18
O o0 1 o0 1]10 10 '
o0 0 0 -2 3|0 \ -2
X3 X4 X5 X1 X3 bj/Vj m‘n
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X; X, X3 X4 Xg
1 -2 1 0O 0| 4 Xy = 2X, + X3=4
2 1 0 1 0 | 18 2X; + X, + X4 = 18
0o 1 0 0 1]10 X, + X5 = 10
2 -3 0 0 0 0 Z = -2%, - 3%,
lFind corner
1 0 0 1 -2|4
0 1 0 2 1 18
0 0 1 0 1 10
0 0 o -2 -3]|0 A
o Xa X5 K % X1 = X, = 0 (start)
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Example
SWC(?/\
1 0o -2 1 0 4 1
0 1 1 2 0 | 18
0 0 1 0 1 10
0 o -3 -2 O 0
X3 Xg X, X Xg
-2
1 0 0 1 2 | 24
0 1 0 2 -11]38 Gauss-Jordan
0 0 1 0 1 10 Elimination
0 0 0 -2 330
X3 Xg4 X, X Xg
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Example

1 0 0 1 2]24

o 1 0 2 1|8

0 0 1 0 1|10

o o ol 330

X3 X4 X, Xy Xg

1 0 o 1 22| 24
o 1t 0 2 -1]8

0o 0 1 o0 1]10| 1
o o ol 330

X3 X4 X X; Xg
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18
Example
swap
1 1 0 0 2|24 1
0o 2 0 1 -1|38
0o 0 1 o0 10
0 -2 0 0 3|30
X3 Xy X, X4 Xs
1 0 0 -5 25|20 2
0O 1 0 5 -5| 4 Gauss-Jordan
0O 0 1 o0 10 Elimination
o 0 0 1 2|38
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Simplex Concluding remarks

For dense matrices, takes O(n(n+m)) time per
iteration

Can take an exponential number of iterations.

In practice, sparse methods are used for the
iterations.
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Duality
Primal (P):

maximize z =c'x
subject to Ax<b
x>0 (nequations, m variables)
Dual (D):
minimize z=y'b
subject to ATy >c¢
y 20 (m equations, n variables)

Duality Theorem: if x is feasible for P and y is

feasible for D, then cx <yb
and at optimality cx =yb.
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Duality (cont.)

( Optimal solution for both

[
feasible solutions for  feasible solutions for

Dual (maximization) Primal (minimization)

Quite similar to duality of Maximum Flow and
Minimum Cut.

Useful in many situations.
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Duality Example

Primal: Dual:
maximize: minimize:
Z=2x%; + 3X, z = 4y, + 18y, + 10y,
subject to: subject fo:
X;-2x, <4 yi1+2y, =22
2x + X, <18 -2y +Y,+ Y3 23
X, <10 Y1 Y2, Y320
Xy, X, 20

Solution to both is 38 (x,= 4, x,=10), (y;=0, y,=1, y;=2)
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