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15-853:Algorithms in the Real World

Data Compression 4
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Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, …
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...

– Scalar and vector quantization
– JPEG and MPEG

Compressing graphs and meshes: BBK
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Scalar Quantization
Quantize regions of values into a single value:

input

output

uniform
input

output

non uniform

Can be used to reduce # of bits for a pixel
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Generate Output

Vector Quantization

Generate Vector

Find 
closest 
code 
vector

Codebook Index Index Codebook

OutIn

Encode Decode



2

15-853 Page 5

Vector Quantization
What do we use as vectors?
• Color (Red, Green, Blue)

– Can be used, for example to reduce 
24bits/pixel to 8bits/pixel

– Used in some terminals to reduce data rate 
from the CPU (colormaps)

• K consecutive samples in audio
• Block of K pixels in an image
How do we decide on a codebook
• Typically done with clustering
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Vector Quantization: Example
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Linear Transform Coding
Want to encode values over a region of time or space

– Typically used for images or audio
Select a set of linear basis functions fi that span the 

space 
– sin, cos, spherical harmonics, wavelets, …
– Defined at discrete points
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Linear Transform Coding
Coefficients: ∑∑ ==Θ
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Example: Cosine Transform
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Other Transforms
Polynomial:

1 x x2

Wavelet (Haar):
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How to Pick a Transform
Goals:

– Decorrelate
– Low coefficients for many terms
– Basis functions that can be ignored by 

perception
Why is using a Cosine of Fourier transform across a 

whole image bad?
How might we fix this?
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Usefulness of Transform
Typically transforms A are orthonormal: A-1 = AT

Properties of orthonormal transforms:
� ∑ x2 = ∑ Θ2   (energy conservation)

Would like to compact energy into as few 
coefficients as possible
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σ
(the transform coding gain)
arithmetic mean/geometric mean

σi = (Θi - Θav)
The higher the gain, the better the compression
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Case Study: JPEG
A nice example since it uses many techniques:

– Transform coding (Cosine transform)
– Scalar quantization
– Difference coding
– Run-length coding
– Huffman or arithmetic coding

JPEG (Joint Photographic Experts Group) was 
designed in 1991 for lossy and lossless
compression of color or grayscale images.  The 
lossless version is rarely used.

Can be adjusted for compression ratio (typically 10:1)
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JPEG in a Nutshell
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JPEG: Quantization Table

9910310011298959272
10112012110387786449
921131048164553524
771031096856372218
6280875129221714
5669574024161314
5560582619141212
6151402416101116

Also divided through uniformaly by a quality 
factor which is under control. 
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JPEG: Block scanning order

Uses run-length coding for sequences of zeros
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JPEG: example

.125 bits/pixel (factor of 200)
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Case Study: MPEG
Pretty much JPEG with interframe coding
Three types of frames

– I = intra frame (aprox. JPEG) anchors
– P = predictive coded frames
– B = bidirectionally predictive coded frames

Example:

Order:

Type:

11131281095762431
IBBPBBPBBPBBI

I frames are used for random access.
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MPEG matching between frames
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MPEG: Compression Ratio

30 frames/sec x 4.8KB/frame x 8 bits/byte
= 1.2 Mbits/sec + .25 Mbits/sec (stereo audio)

HDTV has 15x more pixels 
= 18 Mbits/sec

27/14.8KBAverage
50/12.5KBB
20/16KBP
7/118KBI

CompressionSizeType

356 x 240 image
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MPEG in the “real world”
• DVDs

– Adds “encryption” and error correcting codes
• Direct broadcast satellite
• HDTV standard

– Adds error correcting code on top
• Storage Tech “Media Vault”

– Stores 25,000 movies
Encoding is much more expensive than encoding.
Still requires special purpose hardware for high 

resolution and good compression.
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Wavelet Compression
• A set of localized basis functions
• Avoids the need to block
“mother function” φ(x)

φsl(x) = φ(2sx – l)
s = scale        l = location

Requirements

Many mother functions have been suggested.
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Haar Wavelets

Hsl(x) = φ(2sx – l)
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Haar Wavelet in 2d
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Discrete Haar Wavelet Transform

8

How do we convert this to the wavelet coefficients?

H00
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Discrete Haar Wavelet Transform

for (j = n/2; j >= 1; j = j/2) {
for (i = 1; i < j; i++) {
b[i] = (a[2i-1] + a[2i])/2;
b[j+i] = (a[2i-1] – a[2i])/2; }

a[1..2*j] = b[1..2*j]; }

8

How do we convert this to the wavelet coefficients?

Linear time!

Averages

Differences
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Haar Wavelet Transform: example

8

2-11.5.5.5.5.75.25=a
.75.25=

-.5.5-.51=
2-11.5.50-1.51.5=
-220-2-1212=a
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Wavelet decomposition
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Morlet Wavelet

Corresponds to wavepackets in physics.

( ) )5cos(22

xe x−φ(x) = Gaussian § Cosine =
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Daubechies Wavelet
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JPEG2000
Overall Goals:

– High compression efficiency with good quality 
at compression ratios of .25bpp

– Handle large images (up to 232 x 232)
– Progressive image transmission

• Quality, resolution or region of interest
– Fast access to various points in compressed 

stream
– Pan and Zoom while only decompressing parts
– Error resilience
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JPEG2000: Outline
Main similarities with JPEG
• Separates into Y, I, Q color planes, and can 

downsample the I and Q planes
• Transform coding
Main differences with JPEG
• Wavelet transform

– Daubechies 9-tap/7-tap (irreversible)
– Daubechies 5-tap/3-tap (reversible)

• Many levels of hierarchy (resolution and spatial)
• Only arithmetic coding
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JPEG2000: 5-tap/3-tap
h[i] = a[2i-1] - (a[2i] + a[2i-2])/2;
l[i] = a[2i] + (h[i-1] + h[i] + 2)/2;

h[i]: is the “high pass” filter, ie, the differences
it depends on 3 values from a (3-tap)

l[i]: is the “low pass” filter, ie, the averages
it depends on 5 values from a (5-tap)

Need to deal with boundary effects.
This is reversible: assignment
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JPEG 2000: Outline
A spatial and resolution hierarchy

– Tiles: Makes it easy to decode sections of an 
image.  For our purposes we can imagine the 
whole image as one tile.

– Resolution Levels: These are based on the 
wavelet transform.  High-detail vs. Low detail.

– Precinct Partitions: Used within each 
resolution level to represent a region of space.

– Code Blocks: blocks within a precinct
– Bit Planes: ordering of significance of the bits
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JPEG2000: Precincts

Precinct
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JPEG vs. JPEG2000

JPEG: .125bpp JPEG2000: .125bpp
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Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, …
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK
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Compressing Structured Data
So far we have concentrated on Text and Images, 

compressing sound is also well understood.
What about various forms of “structured” data?

– Web indexes
– Triangulated meshes used in graphics
– Maps (mapquest on a palm)
– XML
– Databases
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Compressing Graphs 
Goal: To represent large graphs compactly while 

supporting queries efficiently
– e.g., adjacency and neighbor queries
– want to do significantly better than adjacency 

lists (e.g.  a factor of 10 less space, about the 
same time)

Applications:
– Large web graphs 
– Large meshes
– Phone call graphs

15-853 Page 40

How to start?
Lower bound for n vertices and m edges?
1. If there are N possible graphs then we will need 

log N bits to distinguish them
2. in a directed graph there are n2 possible edges 

(allowing self edges)
3. we can choose any m of them so

N = (n2 choose m) 
4. We will need log (n2 choose m) = O(m log (n2/m)) 

bits in general
For sparse graphs (m = kn) this is hardly any better 

than adjacency lists (perhaps factor of 2 or 3).
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What now?
Are all graphs equally likely?
Are there properties that are common across “real 

world” graphs?
Consider

– link graphs of the web pages
– map graphs
– router graphs of the internet
– meshes used in simulations
– circuit graphs

LOCAL CONNECTIONS / SMALL SEPARATORS
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Edge Separators
An edge separator for (V,E) is a 

set of edges E’ ⊂ E whose 
removal  partitions V into two 
components V1 and V2

Goals:
– balanced (|V1| ≈ |V2|)
– small (|E’| is small)

A class of graphs S satisfies a
f(n)-edge separator theorem if 
∃ α < 1, β > 0 
∀ (V,E) ∈ S, ∃ separator E’, 
|E’| < β f(|V|), 
|Vi|  < α|V|, i = 1,2

Can also define vertex separators.
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Separable Classes of Graphs
Planar graphs: O(n1/2) separators
Well-shaped meshes in Rd: O(n1-1/d) [Miller et al.]
Nearest-neighbor graphs
In practice, good separators from circuit graphs, 

street graphs, web connectivity graphs, router 
connectivity graphs

Note: All separable classes of graphs have bounded 
density (m is O(n))
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Main Ideas
– Number vertices so adjacent vertices have 

similar numbers
• Use separators to do this

– Use difference coding on adjacency lists
– Use efficient data structure for indexing
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Compressed Adjacency Tables
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Compressed Adjacency Tables
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Log-sized Codes
Log-sized code: Any prefix code that takes 
O(log(d)) bits to represent an integer d.
Gamma code, delta code, skewed Bernoulli code

Example: Gamma code
Prefix: unary code for ⎣log d⎦
Suffix: binary code for d-2⎣log d⎦

(binary code for d, except leading 
1 is implied)
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Difference Coding
For each vertex, encode:

– Degree
– Sign of first entry
– Differences in 

adjacency list

Concatenate vertex 
encodings to encode the 
graph
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Renumbering with Edge Separators
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Renumbering with Edge Separators
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Renumbering with Edge Separators
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Renumbering with Edge Separators
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Theorem (edge separators)
Any class of graphs that allows O(nc) edge 

separators can be compressed to O(n) bits with 
O(1) access time using:
– Difference coded adjacency lists
– O(n)-bit indexing structure
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Performance: Adjacency Table

Time is to create the structure, normalized to time for DFS
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Performance: Overall
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Conclusions
O(n)-bit representation of separable graphs with 

O(1)-time queries
Space efficient and fast in practice for a wide 

variety of graphs.
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Compression Summary
Compression is all about probabilities

Dynamic
Part

Static Part

Coder

Message
s ∈S

Codeword

Model

{p(s) | s ∈S}

Compress

|w| ≈ iM(s)
= -log p(s)

We want the model to skew the probabilities as 
much as possible (i.e., decrease the entropy)
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Compression Summary
How do we figure out the probabilities

– Transformations that skew them
• Guess value and code difference
• Move to front for temporal locality
• Run-length
• Linear transforms (Cosine, Wavelet)
• Renumber (graph compression)

– Conditional probabilities
• Neighboring context

In practice one almost always uses a combination of 
techniques


