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Data Compression 4
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Compression Qutline

Introduction: Lossy vs. Lossless, Benchmarks, ...
Information Theory: Entropy, etc.

Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others

Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
‘ Lossy algorithms for images: JPEG, MPEG, ...
- Scalar and vector quantization
- JPEG and MPEG
Compressing graphs and meshes: BBK
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Scalar Quantization

Quantize regions of values into a single value:

output output

input input
uniform nonh uniform

Can be used to reduce # of bits for a pixel
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Vector Quantization
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Vector Quantization

What do we use as vectors?
+ Color (Red, Green, Blue)

- Can be used, for example to reduce
24bits/pixel to 8bits/pixel

- Used in some terminals to reduce data rate
from the CPU (colormaps)

* K consecutive samples in audio
+ Block of K pixels in an image

How do we decide on a codebook
+ Typically done with clustering
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Vector Quantization: Example
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Linear Transform Coding

Want to encode values over a region of time or space
- Typically used for images or audio

Select a set of linear basis functions i,that span the
space
- sin, cos, spherical harmonics, wavelets, ...
- Defined at discrete points
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Linear Transform Coding
Coefficients: @, = mei. (j)= ijaij

.th J - - - J
®; = i resulting coefficient
x;=j" input value
a; = ij™ transform coefficient =¢(])
0= Ax

In matrix notation: _1
Xx=A"0

Where A is an n x n matrix, and each row
defines a basis function
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Example: Cosine Transform

N
# () ¢l(j)\\ ¢2(J)\</

O zzxjﬂ(j)
j
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Other Transforms

Polynomial:

x2

Wavelet (Haar):

1 L[
I
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How to Pick a Transform

Goals:
- Decorrelate
- Low coefficients for many terms
- Basis functions that can be ignored by
perception
Why is using a Cosine of Fourier transform across a
whole image bad?
How might we fix this?
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Usefulness of Transform

Typically transforms A are orthonormal: A1 = AT
Properties of orthonormal transforms:
[1 X x%2 =3 02 (energy conservation)

Would like to compact energy into as few
coefficients as possible

O;
G.. =N (the transform coding gain)
TC . . .
(l‘] (,iZ)yn arithmetic mean/geometric mean

O = (®i - ®av)
The higher the gain, the better the compression
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Case Study: JPEG

A nice example since it uses many techniques:
- Transform coding (Cosine transform)
- Scalar quantization

Difference coding

Run-length coding

- Huffman or arithmetic coding

JPEG (Joint Photographic Experts Group) was
designed in 1991 for lossy and lossless
compression of color or grayscale images. The
lossless version is rarely used.

Can be adjusted for compression ratio (typically 10:1)
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JPEG in a Nutshell
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JPEG: Quantization Table

16 | 11 | 10 | 16 | 24 | 40 | B1 | 61
12 |12 | 14 | 19 | 26 | 58 | 60 | 55
14 | 13 | 16 | 24 | 40 | 57 | 69 | 56
14 |17 | 22 | 29 | B1 | 87 | 80 | 62
18 | 22 | 37 | 56 | 68 | 109 | 103 | 77
24 | 35 | B5 | 64 | 81 | 104 | 113 | 92
49 | 64 | 78 | 87 | 103 | 121 | 120 | 101
72 | 92 | 95 | 98 | 112 | 100 | 103 | 99

Also divided through uniformaly by a quality
factor which is under control.
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JPEG: Block scanning order

Uses run-length coding for sequences of zeros
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JPEG: example

125 bifs/bixel (factor of 200)
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Case Study: MPEG

Pretty much JPEG with interframe coding
Three types of frames
- I = inftra frame (aprox. JPEG) anchors
- P = predictive coded frames

- B = bidirectionally predictive coded frames
Example:

Type: I B B P B B P B B P B B I
Order: 1 3 4 2 6 7 5 9 10 8 12 13 11

I frames are used for random access.
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MPEG matching between frames
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MPEG: Compression Ratio
356 x 240 image

Type Size | Compression
I 18KB 7/1
P 6KB 20/1
B 2.5KB 50/1
Average | 4.8KB 27/1

30 frames/sec x 4.8KB/frame x 8 bits/byte

= 1.2 Mbits/sec + .25 Mbits/sec (stereo audio)
HDTV has 15x more pixels

= 18 Mbits/sec
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MPEG in the "“real world"

- DVDs
- Adds “encryption” and error correcting codes
+ Direct broadcast satellite
+ HDTV standard
- Adds error correcting code on top
+ Storage Tech "Media Vault"
- Stores 25,000 movies
Encoding is much more expensive than encoding.

Still requires special purpose hardware for high
resolution and good compression.
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Wavelet Compression

+ A set of localized basis functions
+ Avoids the need to block

“mother function” @(x)

Pgi(x) = @(25x - 1)
s = scale | = location

Requirements
T(P(X)dx =0 and T|(p(X)|2dX <o

Many mother functions have been suggested.
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Haar Wavelets

Most described, least used. 1 0<x<1/2
R . p(X)=1-1 1/2<x<1
Hoo 0 otherwise

o es O, | N ]
i) Ha Ll THe [ [Ha |

+ DC component = 2¥1 components
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Haar Wavelet in 2d

1

15-853 Page 24




Discrete Haar Wavelet Transform
[T
5

How do we convert this to the wavelet coefficients?

Fa 1
Hoo [

'_I 5 1
Mo [ [T H

-
. L
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Discrete Haar Wavelet Transform
[T
i

How do we convert this to the wavelet coefficients?
for g =n/2; §J >=1; j =3/2) {

for (i = 1; i < j; i++) { /Averages
b[i] = (a[2i-1] + a[2i])/2;
b[j+i] = (a[2i-1] - a[2i])/2; }

a[1..2*j] = b[1..2*j]; }

L timel Differences
inear timel
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Haar Wavelet Transform: example

Fﬂﬂ
H L

2 1 2 -1 -2 0 2 -2
15 5 1 0 5 15 -1 2
1 -5 5 -5

.25 75
2575 5 5 5 15 -1 2
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Wavelet decomposition
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Morlet Wavelet

®(x) = Gaussian § Cosine = e‘(xz/ 2)cos(5x)

Corresponds to wavepackets in physics.
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Psiix)

Daubechies Wavelet
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JPEG2000

Overall Goals:
- High compression efficiency with good quality
at compression ratios of .25bpp
Handle large images (up to 232 x 232)
Progressive image fransmission
* Quality, resolution or region of interest

Fast access to various points in compressed
stream

- Pan and Zoom while only decompressing parts
- Error resilience
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JPEG2000: Outline

Main similarities with JPEG

+ Separates into Y, I, Q color planes, and can
downsample the I and Q planes

+ Transform coding
Main differences with JPEG
+ Wavelet transform
- Daubechies 9-tap/7-tap (irreversible)
- Daubechies 5-tap/3-tap (reversible)
* Many levels of hierarchy (resolution and spatial)
+ Only arithmetic coding
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JPEG2000: 5-tap/3-tap

h[i] = a[2i-1] - (@[2i] + a[2i-2])/2;
= a[2i] + (h[i-1] + h[i] + 2)/2;

-—

=

-

i
I

h[i]: is the “high pass” filter, ie, the differences
it depends on 3 values from a (3-tap)

I[i]: is the “low pass” filter, ie, the averages
it depends on 5 values from a (5-tap)

Need to deal with boundary effects.
This is reversible: assignment
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JPEG 2000: Outline

A spatial and resolution hierarchy

- Tiles: Makes it easy to decode sections of an
image. For our purposes we can imagine the
whole image as one tile.

- Resolution Levels: These are based on the
wavelet transform. High-detail vs. Low detail.

- Precinct Partitions: Used within each
resolution level to represent a region of space.

- Code Blocks: blocks within a precinct
- Bit Planes: ordering of significance of the bits
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JPEG2000: Precincts

Precinct
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JPEG vs. JPEG2000

JPEG: .125bpp JPEG2000: .125bpp
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Compression Qutline

Introduction: Lossy vs. Lossless, Benchmarks, ...
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
‘ Compressing graphs and meshes: BBK
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Compressing Structured Data

So far we have concentrated on Text and Images,
compressing sound is also well understood.

What about various forms of “structured” data?
- Web indexes
- Triangulated meshes used in graphics
- Maps (mapquest on a palm)
- XML
- Databases
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Compressing Graphs

Goal: To represent large graphs compactly while
supporting queries efficiently

- e.g., adjacency and neighbor queries

- want to do significantly better than adjacency
lists (e.g. a factor of 10 less space, about the
same time)

Applications:

- Large web graphs

- Large meshes

- Phone call graphs
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How to start?

Lower bound for n vertices and m edges?
1. If there are N possible graphs then we will need
log N bits to distinguish them

2. inadirected graph there are n? possible edges
(allowing self edges)

3. we can choose any m of them so
N = (n2 choose m)

4. We will need log (n? choose m) = O(m log (n?/m))
bits in general

For sparse graphs (m = kn) this is hardly any better
than adjacency lists (perhaps factor of 2 or 3).
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What now?

Are all graphs equally likely?

Are there properties that are common across “real
world” graphs?

Consider

- link graphs of the web pages
map graphs
router graphs of the internet
meshes used in simulations
circuit graphs

LOCAL CONNECTIONS / SMALL SEPARATORS
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Edge Separators

An edge separator for (V,E) is a
set of edges E' C E whose
removal partitions V into two
components V; and V,

Goals:

- balanced (|V,| = |V,I)
- small (|E'| is small)

A class of graphs S satisfies a
f(n)-edge separator theorem if
Ja<l,B>0
v (V,E) € S, 3 separator E',

[E' < B f(IVI),
VI <alV],i=12
Can also define vertex separators.

15-853

Page 42

Separable Classes of Graphs

Planar graphs: O(n'/2) separators
Well-shaped meshes in R%: O(n!-1/d) [Miller et al.]
Nearest-neighbor graphs

In practice, good separators from circuit graphs,
street graphs, web connectivity graphs, router
connectivity graphs

Note: All separable classes of graphs have bounded
density (m is O(n))
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Main Ideas

- Number vertices so adjacent vertices have
similar numbers

* Use separators to do this
- Use difference coding on adjacency lists
- Use efficient data structure for indexing
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Compressed Adjacency Tables

# | D |Meightors | Differences
012134 31
1445683112
21116 4
31207 =37
4141017841861
5/31168 -4 52
631|125 -5 13
713|348 -4 14
gl414 57 |-7 312
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Compressed Adjacency Tables

15-853

# | D [Meighbors | Differences
01111 1
113|023 -121
213|134 -121
3l4|1245|-1121
4l4|2356|-2121
5l4|3487|-2121
B|3|458 -2 13
712158 -7 3
g|2|867 -z 1
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Log-sized Codes

Log-sized code: Any prefix code that takes

O(log(d)) bits to represent an integer d.

Gamma code, delta code, skewed Bernoulli code

Example: Gamma code Decimal
Prefix: unary code for log d ;
Suffix: binary code for d-2lgd! 3
(binary code for d, except leading 4
1is implied) g

7

8

15-853

Gamma

01(0

001|00
001]01
00110
00111
0001|000

Page 47

Difference Coding

For each vertex, encode:
- Degree
- Sign of first entry

- Differences in
adjacency list

Concatenate vertex
encodings to encode the
graph

15-853

#

D | Differences

]

2

31

a10

o 0111

degree sign 3 1

#

D

Differences

4

4

-4 161

00100 1 00100 1 001101
degree sign 4 1

6 1
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Renumbering with Edge Separators

15-853 Page 49

Renumbering with Edge Separators
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Renumbering with Edge Separators
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Renumbering with Edge Separators
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Theorem (edge separators) Performance: Adjacency Table

Any class of graphs that allows O(n°) edge o dﬁ”spm 7Ty ehs“g;m . f;: hré(::mce - ;T,l:u{;pm
separators can be compressed to O(n) bits with auto 0.79 | 9.88 | 153.11 | [5.17] | 7.5 | 580 | 1459 | 552
O(1) access time using: foocesn | 0.06 | 13.88 | 388.83 | [7.66| | 17.16 | 845 || 3483 | 770

- Difference coded adjacency lists midh || 0.31 | 10.65 | 18141 | [481] | 8.16 | 545 | 1532 | 513
o ) ihml? || 0.44 | 13.01 | 136.43 | [6.18 | 110 | 679 || 2025 | 6€.64
= O(n)-bit indexing structure ihm18 | 048 | 11.88 | 12022 |[5.72] | o5 | 624 || 1728 | 613

CA 0.76 | 8.41 | 382.67 | 438 | 14.61 | 480 | 35.21 | [429
PA 043 | 847 | 36406 | 445 | 13.95 | 4.98 | 33.02 | (437
googlel | 1.4 | 7.44 | 186.91 12.71 | 418 || 40.86 | 4.14
googleQ) || 1.4 | 11.03 | 18601 | 6.78 || 12.71 | 6.21 || 40.06 | [6.05
lucent || 0.04 | 7.56 || 300.F5 | 5.52 | 19.5 | H54 || 4575 | (544
scan 0.12 | 8.00 | 280.25 | 594 | 23.33 | 5.76 || BL7H | [5.66

[Avg | [10.02 | 252.78 | 5.52 [ 18.85 | 586 || 34.54 | 556 |
Time is to create the structure, normalized to time for DFS
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Performance: Overall Conclusions
Array List bu-cf/semi O(n)-bit representation of separable graphs with
Graph |time |space | time | space | time | space O(1)-time queries

auto 024 | 342 | 0.61 | 66.2 |0.51 | 7.17
feocean | 0.04 | 37.6 | 0.08 | 69.6 | 0.09 | 11.75
ml4b 0.11| 341 | 0.29 | 66.1 |0.24 | 6.70
ibml17 [0.15| 33.3 | 040 | 65.3 |0.34 | 7.72
ibml8 [0.14| 33.5 | 0.38 | 65.5 | 0.32| 7.33
CA 034 | 434 | 056 | 75.4 | 0.58 | 11.66
PA 0.19| 43.3 | 0.31 | 75.3 | 0.32 | 11.68
googlel |0.24| 37.7 | 049 | 69.7 | 0.45 | 7.86
googleO | 0.24 | 37.7 | 0.50 | 69.7 | 0.51| 9.90
lucent | 0.02 | 42.0 | 0.04 | 74.0 | 0.05 | 11.87
scan 0.04| 434 | 0.06 | 75.4 | 0.08 | 12.85

time is for one DFS

Space efficient and fast in practice for a wide
variety of graphs.
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Compression Summary Compression Summary

Compression is all about probabilities How do we figure out the probabilities
- Transformations that skew them

Model Compress - Guess value and code difference
- * Move to front for temporal locality
Static Part
PO s =5 cos Codeword * Run-length
Dynamic O T W = i,(9) - Linear transforms (Cosine, Wavelet)
— = -log p(s) « Renumber (graph compression)
Message j | - Conditional probabilities
s €S * Neighboring context
e In practice one almost always uses a combination o
We want the model to skew the probabilities as -|-pechn|'ques Y f

much as possible (7.e., decrease the entropy)
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