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15-853:Algorithms in the Real World

Data Compression: Lectures 1 and 2
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Compression in the Real World
Generic File Compression

– Files: gzip (LZ77), bzip (Burrows-Wheeler), 
BOA (PPM)

– Archivers: ARC (LZW), PKZip (LZW+)
– File systems: NTFS

Communication
– Fax: ITU-T Group 3  (run-length + Huffman)
– Modems: V.42bis protocol (LZW),

MNP5 (run-length+Huffman)
– Virtual Connections
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Compression in the Real World
Multimedia

– Images: gif (LZW), jbig (context),
jpeg-ls (residual), jpeg (transform+RL+arithmetic)

– TV: HDTV (mpeg-4)
– Sound: mp3

An example
Other structures

– Indexes: google, lycos
– Meshes (for graphics): edgebreaker
– Graphs
– Databases:
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Compression Outline
Introduction: 

– Lossless vs. lossy
– Model and coder
– Benchmarks

Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK
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Encoding/Decoding
Will use “message” in generic sense to mean the data 

to be compressed

Encoder DecoderInput
Message

Output
Message

Compressed
Message

The encoder and decoder need to understand 
common compressed format.
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Lossless vs. Lossy
Lossless: Input message = Output message
Lossy: Input message ≈ Output message

Lossy does not necessarily mean loss of quality. In 
fact the output could be “better” than the input.
– Drop random noise in images (dust on lens)
– Drop background in music
– Fix spelling errors in text.  Put into better 

form.
Writing is the art of lossy text compression.
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How much can we compress?
For lossless compression, assuming all input messages 

are valid, if even one string is compressed, some 
other must expand.  
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Model vs. Coder
To compress we need a bias on the probability of 

messages.  The model determines this bias 

Model Coder
Probs. BitsMessages

Encoder

Example models:
– Simple: Character counts, repeated strings
– Complex: Models of a human face
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Quality of Compression
Runtime vs. Compression vs. Generality
Several standard corpuses to compare algorithms
e.g. Calgary Corpus
2 books, 5 papers, 1 bibliography, 

1 collection of news articles, 3 programs, 
1 terminal session, 2 object files, 
1 geophysical data, 1 bitmap bw image

The Archive Comparison Test maintains a 
comparison of just about all algorithms publicly 
available
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Comparison of Algorithms 

Program Algorithm Time BPC Score
RK  LZ + PPM 111+115 1.79 430 

BOA PPM Var. 94+97 1.91 407 
PPMD PPM 11+20 2.07 265 
IMP BW 10+3 2.14 254 
BZIP BW 20+6 2.19 273 
GZIP LZ77 Var. 19+5 2.59 318 
LZ77 LZ77 ? 3.94 ? 
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Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: 

– Entropy
– Conditional Entropy
– Entropy of the English Language

Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK
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Information Theory
An interface between modeling and coding
Entropy

– A measure of information content
Conditional Entropy

– Information content based on a context
Entropy of the English Language

– How much information does each character in 
“typical” English text contain?
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Entropy (Shannon 1948)
For a set of messages S with probability p(s), s ∈S, 

the self information of s is:

Measured in bits if the log is base 2.
The lower the probability, the higher the information
Entropy is the weighted average of self information.

H S p s
p ss S

( ) ( ) log
( )

=
∈
∑ 1
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( )

log ( )= = −
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Entropy Example

p S( ) {. ,. ,. ,. ,. }= 25 25 25 125 125
25.28log125.24log25.3)( =×+×=SH

p S( ) {. ,. ,. ,. ,. }= 5 125 125 125 125

p S( ) {. ,. ,. ,. ,. }= 75 0625 0625 0625 0625

28log125.42log5.)( =×+=SH

3.116log0625.4)34log(75.)( =×+=SH
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Conditional Entropy 
The conditional probability p(s|c) is the probability of s

in a context c.  The conditional self information is

The conditional information can be either more or less 
than the unconditional information.

The conditional entropy is the weighted average of the 
conditional self information

∑ ∑
∈ ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Cc Ss csp
cspcpCSH

)|(
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i s c p s c( | ) log ( | )= −
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Example of a Markov Chain

w b

p(b|w)

p(w|b)

p(w|w) p(b|b)
.9

.1

.2

.8
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Entropy of the English Language
How can we measure the information per character?

ASCII code = 7
Entropy  = 4.5 (based on character probabilities)
Huffman codes (average) = 4.7
Unix Compress = 3.5
Gzip = 2.6
Bzip = 1.9
Entropy = 1.3  (for “text compression test”)

Must be less than 1.3 for English language.
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Shannon’s experiment
Asked humans to predict the next character given 

the whole previous text.  He used these as 
conditional probabilities to estimate the entropy 
of the English Language.

The number of guesses required for right answer:

From the experiment he predicted 
H(English) = .6-1.3

#  of guesses 1 2 3 4 5 > 5
Probability .79 .08 .03 .02 .02 .05
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Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: Entropy, etc.
Probability Coding:

– Prefix codes and relationship to Entropy
– Huffman codes
– Arithmetic codes

Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK
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Assumptions and Definitions
Communication (or a file) is broken up into pieces 

called messages.
Each message come from a message set S = {s1,…,sn}

with a probability distribution p(s).
Probabilities must sum to 1.  Set can be infinite.

Code C(s): A mapping from a message set to 
codewords, each of which is a string of bits

Message sequence: a sequence of messages
Note: Adjacent messages might be of a different 

types and come from a different probability 
distributions



6

15-853 Page 21

Discrete or Blended
We will consider two types of coding:
Discrete: each message is a fixed set of bits 

– Huffman coding, Shannon-Fano coding

Blended: bits can be “shared” among messages
– Arithmetic coding

01001 11 0110001

message:     1       2      3      4

010010111010

message:     1,2,3, and 4
15-853 Page 22

Uniquely Decodable Codes
A variable length code assigns a bit string (codeword) 

of variable length to every message value
e.g. a = 1, b = 01, c = 101, d = 011
What if you get the sequence of bits
1011 ?

Is it aba, ca, or, ad?
A uniquely decodable code is a variable length code in 

which bit strings can always be uniquely decomposed 
into its codewords. 
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Prefix Codes
A prefix code is a variable length code in which no 

codeword is a prefix of another word.
e.g., a = 0, b = 110, c = 111, d = 10
All prefix codes are uniquely decodable
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Prefix Codes: as a tree
Can be viewed as a binary tree with message values 

at the leaves and 0s or 1s on the edges:

a = 0, b = 110, c = 111, d = 10

b c

a
d

0

1

0 1

1

0
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Some Prefix Codes for Integers

n Binary Unary Gamma
1 ..001 0 0| 
2 ..010 10 10|0 
3 ..011 110 10|1 
4 ..100 1110 110|00 
5 ..101 11110 110|01 
6 ..110 111110 110|10 

 

 

Many other fixed prefix codes: 
Golomb, phased-binary, subexponential, ...
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Average Length
For a code C with associated probabilities p(c) the 

average length is defined as

We say that a prefix  code C is optimal if for all  
prefix codes C’,  la(C) ≤ la(C’)

l(c)  = length of the codeword c (a positive integer)

l C p c l ca
c C

( ) ( ) ( )=
∈
∑
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Relationship to Entropy
Theorem (lower bound): For any probability 

distribution p(S) with associated uniquely 
decodable code C,

Theorem (upper bound): For any probability 
distribution p(S) with associated optimal prefix 
code C,

H S l Ca( ) ( )≤

l C H Sa ( ) ( )≤ +1
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Kraft McMillan Inequality
Theorem (Kraft-McMillan): For any uniquely 

decodable code C,

Also, for any set of lengths L such that

there is a prefix code C such that 

12 )( ≤∑
∈

−

Cc

cl

12 ≤∑
∈

−

Ll

l

|)|,...,1()( Lilcl ii ==
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Proof of the Upper Bound (Part 1)
Assign each message a length:
We then have

So by the Kraft-McMillan inequality there is a prefix 
code with lengths l(s).
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Proof of the Upper Bound (Part 2)

( )⎡ ⎤
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p s p s

p s p s
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H S

a
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( ) ( ) ( )
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1
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1

Now we can calculate the average length given l(s)

And we are done.
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Another property of optimal codes
Theorem: If C is an optimal prefix code for the 

probabilities {p1, …, pn} then pi > pj
implies l(ci) ≤ l(cj)

Proof: (by contradiction)
Assume l(ci) > l(cj). Consider switching codes ci and 
cj.  If la is the average length of the original code, 
the length of the new code is

This is a contradiction since la is not optimal

l l p l c l c p l c l c
l p p l c l c
l

a a j i j i j i

a j i i j

a

' ( ( ) ( )) ( ( ) ( ))
( )( ( ) ( ))

= + − + −
= + − −
<
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Huffman Codes
Invented by Huffman as a class assignment in 1950.
Used in many, if not most, compression algorithms
gzip, bzip, jpeg (as option), fax compression,…
Properties:

– Generates optimal prefix codes
– Cheap to generate codes
– Cheap to encode and decode 
– la = H  if probabilities are powers of 2
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Huffman Codes
Huffman Algorithm:
Start with a forest of trees each consisting of a 

single vertex corresponding to a message s and 
with weight p(s)

Repeat until one tree left:
– Select two trees with minimum weight roots p1

and p2
– Join into single tree by adding root with weight 

p1 + p2

15-853 Page 34

Example
p(a) = .1,  p(b) = .2,  p(c ) = .2,  p(d) = .5

a(.1) b(.2) d(.5)c(.2)

a(.1) b(.2)

(.3)

a(.1) b(.2)

(.3) c(.2)

a(.1) b(.2)

(.3) c(.2)

(.5)
(.5) d(.5)

(1.0)

a=000,  b=001,  c=01, d=1

0

0

0

1

1

1
Step 1

Step 2
Step 3
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Encoding and Decoding
Encoding: Start at leaf of Huffman tree and follow 

path to the root.  Reverse order of bits and send.
Decoding: Start at root of Huffman tree and take 

branch for each bit received.  When at leaf can 
output message and return to root.

a(.1) b(.2)

(.3) c(.2)

(.5) d(.5)
(1.0)

0

0

0

1

1

1

There are even faster methods that 
can process 8 or 32 bits at a time
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Huffman codes are “optimal”
Theorem: The Huffman algorithm generates an 

optimal prefix code.
Proof outline:
Induction on the number of messages n.
Consider a message set S with n+1 messages
1. Can make it so least probable messages of S are 

neighbors in the Huffman tree 
2. Replace the two messages with one message with 

probability p(m1) + p(m2) making S’
3. Show that if S’ is optimal, then S is optimal
4. S’ is optimal by induction
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Problem with Huffman Coding
Consider a message with probability .999.  The self 

information of this message is 

If we were to send a 1000 such message we might 
hope to use 1000*.0014 = 1.44 bits.

Using Huffman codes we require at least one bit per 
message, so we would require 1000 bits.

00144.)999log(. =−
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Arithmetic Coding: Introduction
Allows “blending” of bits in a message sequence.

Only requires 3 bits for the example
Can bound total bits required based on sum of  self 

information:

Used in PPM, JPEG/MPEG (as option), DMM
More expensive than Huffman coding, but integer 

implementation is not too bad.  

∑
=

+<
n

i
isl

1
2
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Arithmetic Coding: message intervals
Assign each probability distribution to an interval 

range from 0 (inclusive) to 1 (exclusive).
e.g.

a = .2

c = .3

b = .5

0.0
0.2

0.7

1.0

f(a) = .0,   f(b) = .2,   f(c) = .7

∑
−

=

=
1

1
)()(

i

j
jpif

The interval for a particular message will be called
the message interval (e.g for b the interval is [.2,.7))
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Arithmetic Coding: sequence intervals
Code a message sequence by composing intervals.
For example: bac

The final interval is [.27,.3)
We call this the sequence interval

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.2

0.21

0.27

0.3
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Arithmetic Coding: sequence intervals
To code a sequence of messages with probabilities

pi (i = 1..n) use the following:

Each message narrows the interval by a factor of pi.

Final interval size:

iii

iiii

pssps
fsllfl

111

1111

−

−−

==
+==

∏
=

=
n

i
in ps

1

bottom of interval
size of interval
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Warning
Three types of interval:

– message interval : interval for a single message
– sequence interval : composition of message 

intervals
– code interval : interval for a specific code used 

to represent a sequence interval (discussed 
later)
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Uniquely defining an interval
Important property:The sequence intervals for 

distinct message sequences of  length n will never 
overlap

Therefore: specifying any number in the final 
interval uniquely determines the sequence.

Decoding is similar to encoding, but on each step 
need to determine what the message value is and 
then reduce interval
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Arithmetic Coding: Decoding Example
Decoding the number .49, knowing the message is of 

length 3:

The message is bbc.

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.3

0.35

0.475

0.55

0.49 0.49

0.49
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Representing Fractions
Binary fractional representation:

So how about just using the smallest binary 
fractional representation in the sequence interval.  
e.g.  [0,.33) = .01    [.33,.66) = .1   [.66,1) = .11

But what if you receive a 1?
Should we wait for another 1?    

1011.16/11
0101.3/1

11.75.

=
=
=
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Representing an Interval
Can view binary fractional numbers as intervals by 

considering all completions.  e.g.

We will call this the code interval.

min max interval
. . . [. , . )
. . . [. ,. )
11 110 111 75 10
101 1010 1011 625 75
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Code Intervals: example
[0,.33) = .01    [.33,.66) = .1   [.66,1) = .11

0

1

.01…

.11…
.1…

Note that if code intervals overlap then one code is 
a prefix of the other.

Lemma: If a set of code intervals do not overlap 
then the corresponding codes form a prefix code.
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Selecting the Code Interval
To find a prefix code find a binary fractional number 

whose code interval is contained in the sequence 
interval.  

Can use the fraction l + s/2 truncated to

bits 

.61

.79

.625

.75
Sequence Interval Code Interval (.101)

⎡ ⎤ ⎡ ⎤ss log1)2log( −+=−
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Selecting a code interval: example
[0,.33) = .001    [.33,.66) = .100   [.66,1) = .110

.001

.110

e.g: for [.33…,.66…),  l = .33…, s = .33…
l + s/2 = .5 = .1000…

truncated to                                            bits is .100
Is this the best we can do for [0,.33) ?

.33

.66

0

1

.100

⎡ ⎤ ⎡ ⎤ 3)33log(.1log1 =−+=−+ s
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RealArith Encoding and Decoding
RealArithEncode:
Determine l and s using original recurrences
Code using l + s/2 truncated to 1+⎡-log s⎤ bits
RealArithDecode:
Read bits as needed so code interval falls within a 

message interval, and then narrow sequence 
interval.

Repeat until n messages have been decoded .
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Bound on Length
Theorem: For n messages with self information 

{s1,…,sn}  RealArithEncode will generate at most

bits.

Proof: ⎡ ⎤1 1

1

1

2

1

1

1

1

+ − = + −
⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎢
⎢

⎤

⎥
⎥

= + −
⎡

⎢
⎢

⎤

⎥
⎥

= +
⎡

⎢
⎢

⎤

⎥
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=

=

=

=

∏

∑

∑

∑

log log

log

s p

p

s

s

i
i

n

i
i

n

i
i

n

i
i

n

∑
=

+
n

i
is

1
2

15-853 Page 52

Integer Arithmetic Coding
Problem with RealArithCode is that operations on 

arbitrary precision real numbers is expensive.

Key Ideas of integer version:
Keep integers in range [0..R) where R=2k

Use rounding to generate integer sequence interval
Whenever sequence interval falls into top, bottom or 

middle half, expand the interval by factor of 2 
This integer Algorithm is an approximation or the 

real algorithm.
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Integer Arithmetic Coding 
The probability distribution as integers
Probabilities as counts:

e.g. c(a) = 11,  c(b) = 7, c(c) = 30
T is the sum of counts 

e.g. 48 (11+7+30)
Partial sums f as before:

e.g. f(a) = 0,   f(b) = 11,   f(c) = 18
Require that R > 4T so that 

probabilities do not get rounded to 
zero a = 11

c = 30

b = 7

0

11
18

T=48

R=256

15-853 Page 54

Integer Arithmetic (contracting)
l1 = 0,  s1 = R

⎣ ⎦
⎣ ⎦Tfsll

Tsfslu
lus

iiii

iiiii

iii

/
1/)(

1

⋅+=
−+⋅+=

+−=

0

R=256

u

l 
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Integer Arithmetic (scaling)
If l ≥ R/2 then  (in top half)

Output 1 followed by m 0s
m = 0
Scale message interval by expanding by 2

If u < R/2 then (in bottom half)
Output 0 followed by m 1s
m = 0
Scale message interval by expanding by 2

If l ≥ R/4 and u < 3R/4 then (in middle half)
Increment m
Scale message interval by expanding by 2


