15-853:Algorithms in the Real World

Data Compression: Lectures 1 and 2

15-853 Page 1

Compression in the Real World

Generic File Compression

- Files: gzip (LZ77), bzip (Burrows-Wheeler),
BOA (PPM)

- Archivers: ARC (LZW), PKZip (LZW+)
- File systems: NTFS
Communication
- Fax: ITU-T Group 3 (run-length + Huffman)

- Modems: V.42bis protocol (LZW),
MNP5 (run-length+Huffman)

- Virtual Connections

15-853

Page 2

Compression in the Real World

Multimedia
- Images: gif (LZW), jbig (context),
Jjpeg-ls (residual), jpeg (transform+RL+arithmetic)
- TV: HDTV (mpeg-4)
- Sound: mp3
An example
Other structures
- Indexes: google, lycos
- Meshes (for graphics): edgebreaker
- 6raphs
- Databases:

15-853 Page 3

Compression QOutline

‘ Introduction:

- Lossless vs. lossy

- Model and coder

- Benchmarks
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...

Compressing graphs and meshes: BBK
15-853

Page 4

Encoding/Decoding

Will use “"message” in generic sense to mean the data
to be compressed

Input | Eneoder | COMPressed | oo o | Output
Message Message Message

The encoder and decoder need to understand
common compressed format.

15-853 Page 5

Lossless vs. Lossy

Lossless: Input message = Output message
Lossy: Input message ~ Output message

Lossy does not necessarily mean loss of quality. In
fact the output could be "better” than the input.

- Drop random noise in images (dust on lens)
- Drop background in music

- Fix spelling errors in text. Put into better
form.

Writing is the art of lossy text compression.

15-853 Page 6

How much can we compress?

For lossless compression, assuming all input messages
are valid, if even one string is compressed, some
other must expand.

15-853 Page 7

Model vs. Coder

To compress we heed a bias on the probability of
messages. The model determines this bias

Encoder

Messages Probs. Bits
g Model Coder

Example models:
- Simple: Character counts, repeated strings
- Complex: Models of a human face

15-853 Page 8

Quality of Compression

Runtime vs. Compression vs. Generality
Several standard corpuses to compare algorithms
e.g. Calgary Corpus
2 books, 5 papers, 1 bibliography,
1 collection of news articles, 3 programs,
1 terminal session, 2 object files,
1 geophysical data, 1 bitmap bw image
The Archive Comparison Test maintains a
comparison of just about all algorithms publicly
available

15-853 Page 9

Comparison of Algorithms

Program| Algorithm | Time | BPC |Score
RK |LZ+PPM |111+115|1.79 | 430
BOA | PPM Var. | 94+97 | 1.91| 407

PPMD PPM 11+20 | 2.07 | 265
IMP BW 10+3 | 2.14| 254
BZIP BW 20+6 |2.19| 273
GZIP |LZ77 Var.| 19+5 |259| 318
Lz77 Lz77 ? 394 2

15-853 Page 10

Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, ...

‘ Information Theory:

- Entropy

- Conditional Entropy

- Entropy of the English Language
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853 Page 11

Information Theory

An interface between modeling and coding
Entropy

- A measure of information content
Conditional Entropy

- Information content based on a context
Entropy of the English Language

- How much information does each character in
“typical” English text contain?

15-853 Page 12

Entropy (Shannon 1948)

For a set of messages Swith probability p(s), s €5,
the self information of sis:
1
i(s) =log——=—1log p(s)
p(s)
Measured in bits if the log is base 2.
The lower the probability, the higher the information

Entropy is the weighted average of self information.

1
H(S) = Z P(s)log

15-853 Page 13

Entropy Example

p(S) = {.25,.25,.25,.125, 125}
H(S)=3x.25log4 +2x.125l0g8 = 2.25

p(S) ={5,125,125,.125,125}
H(S)=.5log2+4x.125log8=2

p(S) ={.75,.0625,.0625,.0625,.0625}
H(S)=.75log(4/3) + 4x.0625log16 =1.3

15-853 Page 14

Conditional Entropy

The conditional probability p(s/c)is the probability of s
in a context ¢. The conditional self information is

i(s|c) = —1log p(s|c)
The conditional information can be either more or less
than the unconditional information.

The conditional entropy is the weighted average of the
conditional self information

H(S|C)=Z[p(c)zp(s|c)log L j

ceC seS p (S | C)

15-853 Page 15

Example of a Markov Chain

1
p(biw)

TG N
9 .8

p(w[b)
2

15-853 Page 16

Entropy of the English Language

How can we measure the information per character?
ASCII code =7
Entropy = 4.5 (based on character probabilities)
Huffman codes (average) = 4.7
Unix Compress = 3.5
Gzip=26
Bzip=19
Entropy = 1.3 (for “text compression test")
Must be less than 1.3 for English language.

15-853 Page 17

Shannon's experiment

Asked humans to predict the next character given
the whole previous text. He used these as
conditional probabilities to estimate the entropy
of the English Language.

The number of guesses required for right answer:
#ofguesses] 1] 2] 3 \ 4 \ 5]>5
Probability |.79|.08].03].02].02|.05

From the experiment he predicted
H(English) = .6-1.3

15-853 Page 18

Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, ...
Information Theory: Entropy, etc.
‘ Probability Coding:

- Prefix codes and relationship to Entropy

- Huffman codes

- Arithmetic codes
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...

Compressing graphs and meshes: BBK
15-853 Page 19

Assumptions and Definitions

Communication (or a file) is broken up into pieces
called messages.

Each message come from a message set S = {s,,..,s,}
with a probability distribution p(s).
Probabilities must sum fo 1. Set can be infinite.

Code ({(s): A mapping from a message set o
codewords, each of which is a string of bits

Message sequence: a sequence of messages

Note: Adjacent messages might be of a different
types and come from a different probability
distributions

15-853 Page 20

Discrete or Blended

We will consider two types of coding:
Discrete: each message is a fixed set of bits
- Huffman coding, Shannon-Fano coding

[01001[11][0001 |[011]

message: 1 2 3 4

Blended: bits can be "shared" among messages
- Arithmetic coding

010010111010
message: 1,2,3,and 4

15-853 Page 21

Uniquely Decodable Codes

A variable length code assigns a bit string (codeword)
of variable length to every message value

ega=1, b=01, c =101, d = 011

What if you get the sequence of bits
1011 ?

Is it aba, ca, or, ad?

A uniquely decodable code is a variable length code in
which bit strings can always be uniquely decomposed
into its codewords.

15-853 Page 22

Prefix Codes

A prefix code is a variable length code in which no
codeword is a prefix of another word.

eg.,a=0,b=110,c=111,d=10
All prefix codes are uniquely decodable

15-853 Page 23

Prefix Codes: as a tree

Can be viewed as a binary tree with message values
at the leaves and Os or 1s on the edges:

a=0,b=110,c=111,d=10

15-853 Page 24

Some Prefix Codes for Integers

n Binary Unary Gamma
1 .001 0 0l

2 .010 10 10/0

3 .ol 110 101

4 .100 1110 110j00
5 .101 11110 110j01
6 .110 111110 110j10

Many other fixed prefix codes:
Golomb, phased-binary, subexponential, ...

15-853 Page 25

Average Length

For a code € with associated probabilities p(c)the
average length is defined as

.(C) = ZC: p(c)I(c)

We say that a prefix code Cis optimal if for all
prefix codes €, |,(C)<1,(C)

I(c) =length of the codeword ¢ (a positive integer)

15-853 Page 26

Relationship to Entropy

Theorem (lower bound): For any probability
distribution p(S) with associated uniguely
decodable code C,

H(S) <1.(C)

Theorem (upper bound): For any probability
distribution p(S) with associated optimal prefix

deC
coae .(C) < H(S) +1

15-853 Page 27

Kraft McMillan Inequality

Theorem (Kraft-McMillan): For any uniguely
decodable code C,

> 210<q

ceC
Also, for any set of lengths L such that

do'<1

there is a pref/')«leéoa’e C such that
I(c) =ki@i=1..|L])

15-853 Page 28

Proof of the Upper Bound (Part 1)

Assign each message a length: 1(s) =[log(1/ p(s))]
We then have Z PRI Z 2_[|og(1/p(s)ﬂ

seS seS

< Zz—log(llp(s))

seS

= . p(s)

seS
=1
So by the Kraft-McMillan inequality there is a prefix
code with lengths 1(s).

15-853 Page 29

Proof of the Upper Bound (Part 2)

Now we can calculate the average length given /(s)

L.(S) = D p(s)I(s)

seS

_ Zs: p(s) - log(L/ p(s)) |
< D p(s)-(1+log(L/ p(s)))

seS

= 1+ p(s)log(L/ p(s))

seS

= 1+ H(S)

And we are done.

15-853 Page 30

Another property of optimal codes

Theorem: If C is an optimal prefix code for the
probabilities {p,, ..., p,} then p; > p;
implies\(c) <1(c;)

Proof: (by contradiction)
Assume I(c;) >1(c;). Consider switching codes c;and
¢, If /,is the average length of the original code,
the length of the new code is

L, =1, +p;(1(c:) = 1(c;)) + pi (I(c;) - 1(c)))
=l +(p; = p)(I(c) = 1(c)))
<l,
This is a contradiction since |, is not optimal

15-853 Page 31

Huffman Codes

Invented by Huffman as a class assignment in 1950.
Used in many, if not most, compression algorithms
gzip, bzip, jpeg (as option), fax compression,...
Properties:

- Generates optimal prefix codes

- Cheap to generate codes

- Cheap to encode and decode

- 1,= H if probabilities are powers of 2

15-853 Page 32

Huffman Codes

Huffman Algorithm:

Start with a forest of frees each consisting of a
single vertex corresponding to a message s and
with weight p(s)

Repeat until one tree left:

- Select two trees with minimum weight roots p;,
and p,

- Join into single tree by adding root with weight
Pt P2

15-853 Page 33

Example
pla)=.1, pb)=.2, p(c)=.2, p(d)=.5
° a(l) o b(2) o C(Z) o d(5)

A
a(.1) »b(2) 2 ¢(.2)

Step 1

<a(1) B b(.2)

Step 2 sa(.1) ©b(.2)
Step 3

a=000, b=001, c=01, d=1

15-853 Page 34

Encoding and Decoding

Encoding: Start at leaf of Huffman tree and follow
path to the root. Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take
branch for each bit received. When at leaf can
output message and return to root.

There are even faster methods that O/° (%'O)
can process 8 or 32 bits at a time (5) d(.5)

&3) o c(.2)
PAWN

15-853 Page 35

Huffman codes are “optimal”

Theorem: The Huffman algorithm generates an
optimal prefix code.

Proof outline:
Induction on the number of messages .
Consider a message set S with n+1 messages

1. Can make it so least probable messages of S are
neighbors in the Huffman tree

2. Replace the two messages with one message with
probability p(m;) + p(m,) making S’

3. Show that if S'is optimal, then S is optimal

4. S'is optimal by induction

15-853 Page 36

Problem with Huffman Coding

Consider a message with probability .999. The self
information of this message is

—log(.999) =.00144

If we were to send a 1000 such message we might
hope to use 1000*.0014 = 1.44 bits.

Using Huffman codes we require at least one bit per
message, so we would require 1000 bits.

15-853 Page 37

Arithmetic Coding: Introduction

Allows "blending” of bits in a message sequence.
Only requires 3 bits for the example

Can bound total bits required based on sum of self

information: n
<2+ Zsi
i=1

Used in PPM, JPEG/MPEG (as option), DMM

More expensive than Huffman coding, but integer
implementation is not too bad.

15-853 Page 38

Arithmetic Coding: message intervals

Assign each probability distribution to an interval
range from O (inclusive) to 1 (exclusive).

eg.
I 1.0

— i-1
0yl (=200

b=.5
0o . fa)=.0, f(b)= .2, f(c)=.7
00 -

The interval for a particular message will be called
the message interval (e.g for b the interval is [.2,.7))

15-853 Page 39

Arithmetic Coding: sequence intervals

Code a message sequence by composing intervals.
For example: bac
10 0.7

0.7

0.2

00 0.2 02

The final interval is [.27,.3)
We call this the sequence interval

15-853 Page 40

10

Arithmetic Coding: sequence intervals

To code a sequence of messages with probabilities
P; (i = 1..n) use the following:

L="f Li=lLi+s:fi bottom of interval

SS=P Si=S.P; size of interval

Each message narrows the interval by a factor of p;

n
Final interval size: S, = H Pi
i-1

15-853 Page 41

Warning

Three types of interval:
- message interval : interval for a single message

- sequence interval : composition of message
intervals

- code interval : interval for a specific code used
to represent a sequence interval (discussed
later)

15-853 Page 42

Uniquely defining an interval

Important property:The sequence intervals for
distinct message sequences of length nwill never
overlap

Therefore: specifying any humber in the final
interval uniquely determines the sequence.

Decoding is similar to encoding, but on each step
need to determine what the message value is and
then reduce interval

15-853 Page 43

Arithmetic Coding: Decoding Example

Decoding the number .49, knowing the message is of
length 3:

The message is bbc.

15-853 Page 44

11

Representing Fractions

Binary fractional representation:

75 =11
1/3 =.0101
11/16 =.1011

So how about just using the smallest binary
fractional representation in the sequence interval.
eg. [0,.33)=.01 [33,.66)=.1 [661)=.11

But what if you receive a 1?

Should we wait for another 1?

15-853 Page 45

Representing an Interval

Can view binary fractional numbers as intervals by
considering all completions. e.g.

min max interval

11 110 11 [7510)
101 1010 1011 [.625,.75)
We will call this the code_interval.

15-853 Page 46

Code Intervals: example

[0,33)= .01 [.33,66)=.1 [66,1)=.11

1
. b
}ot.

0
Note that if code intervals overlap then one code is
a prefix of the other.

Lemma: If aset of code intervals do not overiap
then the corresponding codes form a prefix code.

15-853 Page 47

Selecting the Code Interval

To find a prefix code find a binary fractional number
whose code interval is contained in the sequence
interval.

.79
.75
Sequence Interval Code Interval (.101)

61 .625
Can use the fraction | + s/2 truncated to

[~log(s/2)[=1+[~logs]
bits

15-853 Page 48

12

Selecting a code interval: example

[0,33)=.001 [.33,66)=.100 [.66,1)=.110
1

¥ 110
6674 100
33 F.001

0

e.g: for [.33..,66..), 1 =.33..,5=.35..
/+s/2=5=.1000..

truncated to 1+[-logs|=1+[-log(:33)|=3 bits is .100

Is this the best we can do for [0,.33) ?

15-853 Page 49

RealArith Encoding and Decoding

RealArithEncode:

Determine | and s using original recurrences
Code using | + /2 truncated to 1+ -log 5| bits
RealArithDecode:

Read bits as needed so code interval falls within a
message interval, and then narrow sequence
interval.

Repeat until 7 messages have been decoded .

15-853 Page 50

Bound on Length

Theorem: For n messages with self information
{s;,....s,} RealArithEncode wi// generate at most
n

2+)'s bits.

i=1 r n
Proof: 1+(— log s-| = 1+ —IOQ(H pij—‘

[n

= 1+ —log pﬂ

i=1

= 1+ Zn:si—‘
i=1

< 2+Zn:si
i=1

15-853 Page 51

Integer Arithmetic Coding

Problem with RealArithCode is that operations on
arbitrary precision real numbers is expensive.

Key Ideas of integer version:
Keep integers in range [0..R) where R=2k
Use rounding to generate integer sequence interval

Whenever sequence interval falls into top, bottom or
middle half, expand the interval by factor of 2

This integer Algorithm is an approximation or the
real algorithm.

15-853 Page 52

13

Integer Arithmetic Coding

The probability distribution as integers
Probabilities as counts:

e.g.c(a)=11, ¢(b)=7, c(c)= 30
T is the sum of counts

e.g. 48 (11+7+30) T=48 T
Partial sums f as before:

eg.f(a)=0, f(b)=11, f(c)=18 c=30
Require that R > 4T so that

probabilities do not get rounded to 18 Ib=7

11
zero a=11

— R=256

15-853 Page 53

Integer Arithmetic (contracting)

;=0 s;=R R=256
L
L0

15-853 Page 54

Integer Arithmetic (scaling)

If 1 > R/2then (in top half)

Output 1 followed by m Os

m=0

Scale message interval by expanding by 2
If u<R/2then (in bottom half)

Output O followed by m 1s

m=0

Scale message interval by expanding by 2
If 1 > R/4and v < 3R/4then (in middle half)

Increment m

Scale message interval by expanding by 2

15-853 Page 55

14

