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 Definitions. A gmph (” consists of a set of elements ]\ 2\ r whlch’"
we call nodes and a set of different pairs of nodes (N, N,%i # ), -called edges. 7
“For our purpose it is convenient not to exclude graphs in which the set of :
- edges is empty. e ’

A subgraph of G is a graph v&hes& nodes~a11d edges all belong to G-

-Let H be a subgraph of ¢. Then G—H denotes the graph consisting-of - - .

~ those nodes of & which-do not belong to H and’ those edges of @ whlch '
~ have neither end in H. B

f(G) denotes the number of nQdes in G B S .
@ is called planar if its nodes N can be replesented by points in a plane .

- and the edges N;N; by curves ]ommg N;to N;, in such a way that thesef: R

curves do not intersect.

The main purpose of thxs paper is to prove:- th&fellowmg Théorem |
" T found this theorem while considering the question “How many non-
_ adJacent countries can be selected from a map of f countr:eb in the pl&ne? ”

Y S ,THEOREM 1. Let G, dem)te a plana,r gmph Let kbea ;posztwe z%teger
> 1. There emts a set of nodes I such that the components of G — I contain

.

.y

IT——

S Z )'7"<7210"*(10g k)* S (Go)

Ab far as I can -see the proof could not be _sim hﬁed:

' at most k nodes each cmd - N . . E— ,@f-’

FH=o(1)f(G,) ilistead of the explicit. %Pl’ﬁss“m on. in- Trem 1 .Th o
"»"theoxem would probably remain true if we replaced the factor 12 (log k)g

by a constant. It can be shown by considering’ the % hexagonai latbice” -

‘that thls constaﬁt Would be > \/3

' ,W J’roof of Theorem 1. For 2 <k <105 Theorem 1is trwml because in
: thlS interval 12k—4logik > 1 We suppose k>10% -

BN

* Received 23 May, 1950; read 15 June, 1050.
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, LEM}\&A 1 - Let a,, 1o as b,&po&tgne mtegers w%tk sumf If ’ .- /~—~ —

then there amsts a v such tka,t g

o T Y
mm a,, 2 a >
( 1 _v+1 ) 21 gf

’W We may suppose Wlthout loss of generahty that

'('ial — DR
faﬂg LA o
lff"’-~i—~ “Then for v gﬁhe first’ sum in ‘the min is the smaller Supposg ‘now fthét”;" B
Lemma. 1 is false. The functlon_ A_(gz‘:)/__ a[ 2+1) th‘?n Sa’ﬁlweéﬁ@‘\f{iﬂ()wing‘ o
mequa.htles . o

~or if we p.ut L L Iogf/ (3+° 10gf )

4@ > L A
. The functidn ' ‘ \Q.O ,
' a(x)-« 1in 0 <z L*1 and cz(:z:)-——elf“‘?"1 for L"1 L<r g [%8]
”satlsﬁes - . L . ‘
a@)y LAy for 0 < T anda(m)—-j (u}duwfor e <z < %8] A
Hence a(z) <4@) in bg < (48 But since L<ipmby (B -

B

{33] e - . . C
S a(x) dx — L eL{&é] 1 § l"e*’%s 11 -1 > 36}L8 ‘ ; .,,,‘,,__W#_
Jo ) PE

k/ T 36\1) [logf/ 1+28—1 10gf)]>3e‘cp (logf_oa«llog f f

. ] [*
P S whereas : j A (:z:) dx < L a, = f

Whlch i a contra.dlctmn

) Dqﬁmtzons ngmggggg wﬁw—zmmnf

Wedges that a shortest way connecting them contains.

............

_ The diameter d = d(Q) of a connected graph G is the sma,llest number
with the property that the dlstance between any twﬁ nodes of G is < d.

LemMA 2. Let the connected graphk G be such that d(G) > log2 (@),
— = f(G) > 105 Then there exists a non-empty set of nodes F-such that no com-
) © ponent of G— I contains more thtm """"""""""""""""""" .

E— - f@—@+DfDH2 logf(G‘)} B
; - siodes S 77 . | L
© Joum. 104, - ‘ ST d S
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Proof Let P and Q be two nodes at & d:etance d from each other S
~ Let a, be the number of nodes at distance u— 1 from P. These a, sm;mf\ -
the requﬁements 6f Lemma 1 with 8 =d+1. If we choose » accmdmg to

" Lemma 1, then the- nodes lying at a distance v—1 from P formaset I with = i
~fI) = = a,. - The number g of nodee of any component of G— I satisfies ’

S

g <max (Z @y E a \ \f(G)-—mm(E ay, dg a‘,,\

e

77777 <A@ d+1)f )/{2 log f(G)). - L
 LemmA 3. Let G bea connected planar gmpﬁ with diameter d There !7_‘ -
“exists a set of nodes I, such that f(I )< 2d+1 and no component of G-I

vl e ——X T B

- contains more than 2 f(G) nodes.

* Proof. For d=>3f (G) the rgsxﬂt i8 tnwa.l VVe therefme suppose o e
d <if@). : .
. Let us call a'planar graph saturabed if no edge can be added to it Wlthout

| dest;roymg the planar property of the graph Itis enough to prove Lemma 3.

for saturated G. TFor, if we have any graph we can add edges to it until

 we get a saturated graph G A set I which satisfies Lemma 3 for ¢, will

‘also satisfy Lemma 3 for the or: 1gma1 gmph becauee the addltxon of edges 5

~does not increase d.

Let @ be a saturated graph We ‘imagine it bo be drawn on the plane.

k’l?he domains D into which G decomposes the plane are tr mnglee '

Deﬁmtzon A geodetw line 1s a way between two nodes containing as ‘
few “edges as po§§ibffThere ma.y of course be severa,i g-lines betgveen
two nodes.

- We now- deﬁne a class of subgraphs of @ thh we call Y—graphs Let
A and B in G be connected by an edge and let O be a third node. Let OA

~ and OB be arbitrarily chosen but fixed geodetics from O to 4 and B .

respeetlvelv, such that, if F denotes the node farthest from O belongmg to

both- 04 and OB; part OF of 0415 identical with pa.lt. OF of OB If
A # F +# B, we say that the edges and nodes of OF

 edges and nodes inside or on the. Fhe Jordan curve cons1stmfgﬁ k ‘ T
of FA, edge ABand FB, form aY- graph If F==Aor F=DB,thecorres- |

pondmg Y-graph is defined. as the edgés and nodes of the geodetlcs OA and
OB, one of which forms part of the other. If F differs from O, 4 and B,
~the boundary of the graph resembles the sha.pe of the letter Y. ,
~ The followmg argument will show the existence of a Y-graph W1th
3(G) <f(X) <3O
" We start with a Y-graph Y, Wlth f(‘Yl) > 2 f(G) Such a Y, exists;
G itself is a Y-graph Wlth the three nodes on the outer boundary taking  —.
the roles of 0 A, B Y, is not a single geodetlc, for that would glve ‘

w ' ‘ . - N e . -
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d+1 > f ) > 3 f ). So the Jordan curve FA, AB BF’ exists. One
-of the two trmngl% which have the edge AB on their boundary, contains

“interior points of the J(nda,n curve. The thn'd node c of thls trmnglef .
bolongs to ¥, . v P

@

| oommon vnth elther 04 or QB épess&b}y Fr= C’) Replace the part OF' - ——"
— o the geodetlc by. the part OF of O4 or OB. We get a new geodetlc from. . |
- 0 to C; denote it . by OC. Every edge and node of ()C belongs to Yy. . 2

~The geodetlcs OA OC and OB, OC definé two new Y ;graphs Y,and ¥,.

- " Every node of Y belongb to at least one of them. The edge AB however R

- 7 belongs to- nelther o :

o As f(Y) > 3f( (@), either f(Y, )> %f(G ) or f(Y > %f(G) Suppose the :

latter. Iff(Y;) < 2f(G), we have the Y- graph wewant. Iff(Y,)>2f(&),

we can repeat the construction. - We get a Sequence of Y-graphs each SEE
containing fewer edges than the previous 'one. é‘;Henée the seqﬁenee?
~ terminates. Its last member Y, will satisfy ? (@) <f(Y)<3[(G). - -

. The set T of nodes. belongmg to the geodemcs defining the gra.ph Y,
b@pdl&t@ the other nodes of ¥; from the nodes not belongi’ng to Y. A
largest comp@nent of G—1 clearly contains less than 2 f(G) nodes. Also,
by definition, the two geodetics to which the nodes of I belong contain

1101; more than d+ 1 nodes each and O belongs to both. Hence fl) < 2d+ L.
~ This proves Lemma 3.

We construct now a- ‘sequence 0£ dlb}@lﬂt sei;s oﬁnedeS—lrlﬁﬁﬁv =
such that I == I,4...+ I, satisfies Theorem 1. ~ ‘

Suppoae 1, has been deﬁned forall =1 <p < h. I 1 is the cmptv %et

- : (Y ls the- whole gra.ph Forh.>> 0, let G, denote’ a 1argebt eomponent of

T Gy I —...—1, y,1.e.anar bltramly chosen but fixed component (*onta,lmng
not less nodes than any other component of (xo——l =1,y If(G,) <k®

put.g=h—1. _Let f(@) >k . We._ puMLGk)m{qf{Gﬁ}%g PG L

. Ifd(G,,) < )\(G' ), we apply VLemma. 3to ¢, and obtain I,. Itd(4),) = A(G )

sieasa-anply 13 2 to G, a1 d obtam I Lemma 2 can be apphed bbC&UbL
j( k) k> 10° and 4 (0 TR O =2 o e = Stoe T (=t for 0"

A—'and the sets-I;are disjoint, thetonstructmn ends in a finite number of steps.
| We have to estimate f(I). Let G, denote a largest component. of

G—1, If d(Gh)<A(Gh) we have, by Lemma 3, f(Ih,<2( ( ,,)+1) and
f(Gh) > f(GY)+3% f(Gh)

| o MG+ /1 f(@ G
pi"”'*“""'f“a" s V3 (1ogf Gh)>>f @)+ zvaf v 1ogf<ah) -

N A A -6/ ("%ﬁ*’) E)
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N

o Ifd( ,,)>/\(G,g),wegetfr0m};emm32 S .

A T

1<m<lo¢k

(Gh +1 £ \/ f(Gh)
f(Gh) >f Gh )'}" 2 h)gf(G )f(Ih >f Gk )+ ) /0’; Ing (Gh)) f h)
L S ""':'ThlS agam lmpheb {2), so ‘that (2 ) is true for a.ll h. - S ’ ; ﬂ
. Now let) x be any posutwe number. Denote by S the set of mdlces h T -~
e 'h"ﬂp whieh e e - ; - —
- o e a;<f(G G )<2fvw~ e (3) e
] Then . I 66 <2(Gy. (4) o
, Proof of (4) (4) will be prol__ed if we show that if [, m, n ate in' S,
! < m <'n, then no node can belong to all three graphs G-/, G,—a, ,
@,—@G,’. Suppose the. node N belongs to_all three graphs N¢lI;
" otherwise-N-could not_belong to G,,, because m > l.—- Denote by G’ thé
oomponent of G—1I, Whlch contams N. As-G"eG, G, , we have L (
. f(G") <HG—6)) < 2. S o
- Now G” is the eomponenb of Gy iy U contalmng N. Gpisa
" component of Go—Ig—...— 1,4 _and also contams N. #as m >Z G, is & o o
subgraph of ;" and f( ) < J( G, < 2r. As above, Z‘v gl,. Denote. by .
Gy, the component of G, — I, which oontams N. G and @y are dls]omt S
" and both subgraphs of G,,. By definition of Gm’, F(G) < f(G,) _S(), R
‘ f(G") < %f(G,,, <z Aga,m G, is a subgraph of G;,;, a.nd therefore o | -
T f(Gn _ Gn ) <f n) <f(G” <. | o N . o
R Thls Tneans- n¢\S ontmryﬁe—e&r—hypethes& Thus (4) is proved _
: 7’ " We divide the indices 0 <{h < ¢ into. classes S,. heSm if (3) holds  °
T “with z = 2m23-kt (logk)t. Every A belongs to a class with m>1. Co
D WFG%&G«f@H@WS“M(Q‘)’“tWW(IA) =1and f(G,) >k (0 <h <q). BEEES
f(Gk) /7 &
f (@) 2x/3 logf(G’h)> > w_:w (log logk)” -
beca.use “'{/(u/log w) is an mcreasmg functxon for uw>e ” _ . _ %
From (2) and (4), : :
S U< T T 2yfen- ~0) o ’°gf G’*’
1<m<logk hES.a 1<m<logk heS, f(Gh)
" = Z 5.22\/3}(67*,I G,, Ykt (log L)* o
) o 1<m<loak heS. ) : K , L
< 3 4VSf(Go)k-* (1ogk)*<7f(ao)k—i (loglc)% B
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For m > logk we useJ:he fact that, if he S, K .
CAES(CRER > mea g i (1ogk)«*> om-tlosl 1k T (B) -

, ' for k> 10 ‘ o 4
e -~ We put m— [log k] = ;L We get, from (2), (6) and (4),

R f{I\ v v o

A
= Y

y = B 4 i 5
T m>logk heS,‘ K p=1,2,... heS. ) . )‘\;5 /

- =1

T R T T <% 1y3. f(l"'o) V5 {log( QFL)}i o#k m

), {10g )uk)}i guk g xlog ’—{—logk)*e }210g2 uogkdx

logk ™ 10g2 - ; —_—

< 3k“*(log* k+log=tk).
Substltumng this mto (1) and- addmg (5), we obtam'“'
f(I)—~ z 1;2 f(I,, T

m=1,2,. o
B | <ThH(log kY £ o)+1‘>\/15 bt Iog*k+10g‘*k)f<go)
<12k (leghP (6 L
' 1f k > 105 -which estabhshes the theorem S _
. . , 13}31'1 L ,I‘OOf fLemma 3. The ' -

/ s ‘ questnon arose Whether a snmla,r result could be 'proved for other classes
' of graphs. I considered regular graphs of degree 3 (i.e. graphs in which

. - : -3 %gwm%mmdﬁmm&lmgl&gamve result.

. TuEOREM 2. Let k be a positive integer. There exist regular graphs B
of degree 3 with the following property if I'ts any set of nodes such that the

componengs of R—1 each contam less than k nodes, then

— f(1)>if(R) | T
We prove Theorem 2 by showmg SR T -

(a) There exxst regular connected graphs R of degree 3 w1th arbitrarily

I

many nodes which contain no circuit of length < k.- In Tutte’s termino- .

“logy* the girth of R is > k.
- (b) A.Qg graph of degree 3 and gu’th >k satlsﬁes Theorem 2

*Proc.— Camb. Phil.- Soc.;, 43 (1947), 459—474 (a) ‘was also proved some years -
. previeusly by Mr. W. T. Tutte, but not pubhshed

A
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- . Proof of (a)“ Deﬁmtwn The dwtanee of two edges e, ¢’ is one loss tha,n
_ the number of edges in a shortest geodetic with e, e’ as ends. "
For k=1, (a) is trivial. Suppose (a) is proved for k=n—1. We

want to prove it for k = n and f(R) > ¢ > 2", where ¢ is an arbitrarily large

number. By the inductive hypothems there ex;sﬁe @ ponnected regular

graph T of degree 3 with F(T)> ¢ and girth n—1.

Let e be an edge in T

| _which belongs to at least one circuit of length 'n-l.’

Let ¢’ ‘be-an edge at
~distance n—2 from e.

- dlstance 1 from e 1s at most 2‘+1

“ =~ al the edgesin T'is BT

from e is therefore at moet E 9'+1 < 2" < fory, Whereas the number of
o e

Now put {monew nodes E,E one,e reepectlvely
‘and connect them by an edge We get a new graph of degree 3; callit S.
Let the five new edges f,ha.t S contams in place of e. ¢’ be €y, €, E’E' el ey

df EE’ belonged to a circuit of length n—1in S then there Would be in |

T a geodetic with n—2 edges and e, ¢’ as ends, contrary to hypothesis.
‘SO any n— 1 circuit containing e, also contains e,. Such a_eircuit would

Such an edge ¢ ex1sts because the number ofedgesat ,
nd the number of edges at distance < n—=2

correspond to an n— 2 circuit m T. ThlS is a,leo contra,r) to hvpothesm :

Similarly for e,’, e,".

—8-contains at least one less edge belongmg to an n—1 cu'cmt. than T o

- f(8) > A(T)> c. ~'We can_repeat  the process until all edges belonging to
n—l cu'cmts are ehmmated and we get a graph as requu'ed in. (a)
Proof of (b) Let Ibes asd descrlbed in Theorem 2\1'3512’(“1”%

" "“be the components of R-1.’ As f(R) <k, R; contain no eircuits. By an |

obvmus property of trees, the number of edges in R;is f(R)—1. Hence
there are 3f(R;)— 2(f(R ——1) f(R)+2 edges in R,, with one end-node in

[

R _+h;
Ay this glvcn

R o v3f(1) gz(f{R)_wL S‘f{R\—f‘(R I\

) .W@WM;W

edges in B with one end belongmg to I The nodes bemg of degree 3 in

e 4D >f(R)
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