1 Using “expert” advice
Say we want to predict the stock market.
• We solicit n "experts" for their advice. (Will the market go up or down?)
• We then want to use their advice somehow to make our prediction. E.g.,

<table>
<thead>
<tr>
<th>Expt 1</th>
<th>Expt 2</th>
<th>Expt 3</th>
<th>neighbor's dog</th>
<th>truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>down</td>
<td>up</td>
<td>up</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Can we do nearly as well as best in hindsight?

Or game-theoretic version: experts are different strategies. In each time step you pick one and get its payoff. (Will get back to this later...)

2 Using “expert” advice
If one expert is perfect, can get \(\leq \lg(n) \) mistakes with halving alg.
But what if none is perfect? Can we do nearly as well as the best one in hindsight?

Strategy #1:
• Iterated halving algorithm. Same as before, but once we’ve crossed off all the experts, restart from the beginning.
• Makes at most \(\lg(n) \{\text{OPT}+1\} \) mistakes, where \(\text{OPT} \) is \#mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we’ve "learned". Can we do better?

3 Using “expert” advice
Weights 1 1 1 1

precisions Y Y Y Y Y

weights 1 1 1 .5

predictions Y Y Y Y Y

weights 1 .5 .5 .5

Intuition: Making a mistake doesn’t completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.
Analysis: do nearly as well as best expert in hindsight
- \(M = \# \text{mistakes we’ve made so far} \)
- \(m = \# \text{mistakes best expert has made so far} \)
- \(W = \text{total weight (starts at } n) \)
- After each mistake, \(W \) drops by at least 25%.
 So, after \(M \) mistakes, \(W \) is at most \(n(3/4)^M \).
- Weight of best expert is \((1/2)^m\). So,
\[
(1/2)^m \leq n(3/4)^M \\
(4/3)^M \leq n^{2m} \\
M \leq 2.4(m + \lg n)
\]

Randomized Weighted Majority
2.4(m + \lg n) not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.
- Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30) Idea: smooth out the worst case.
- Also, generalize \(\frac{1}{2} \) to \(1 - \epsilon \).
\[
\text{M = expected mistakes} \\
M \leq \frac{\ln(n) - \epsilon}{\epsilon} \\
M \leq 2 \ln(n) \quad \text{if } \epsilon \leq \frac{1}{2}
\]

Analysis
- Say at time \(t \) we have fraction \(F_t \) of weight on experts that made mistake.
- So, we have probability \(F_t \) of making a mistake, and we remove an \(\epsilon F_t \) fraction of the total weight.
- \(W_{\text{real}} = n(1-\epsilon) F_t (1 - \epsilon F_t) \ldots \)
- \(\ln(W_{\text{real}}) = \ln(n) + \sum \ln(1 - \epsilon F_t) \leq \ln(n) - \epsilon \sum F_t \\
 \text{(using } \ln(1-x) = -x) \)
- If best expert makes \(m \) mistakes, then \(\ln(W_{\text{real}}) > \ln((1-\epsilon)^m) \).
- Now solve: \(\ln(n) - \epsilon M > m \ln(1-\epsilon) \).
\[
M \leq \frac{-\ln(1-\epsilon) + \ln(n)}{\epsilon} \approx \frac{1}{\epsilon} \log(n)
\]

Summarizing
- At most \((1+\epsilon)\) times worse than best expert in hindsight, with additive \(\epsilon \log(n) \).
- Often written in terms of additive loss. If running \(T \) time steps, set \(\epsilon \) to get bound \(E[\text{Alg cost}] \leq \text{OPT} + (2T \log n)^{3/2} \).
- Define average regret in \(T \) time steps as:
 \(\text{(avg per-day cost of alg)} - \text{(avg per-day cost of best fixed expert in hindsight)} \)
 Goes to 0 or better as \(T \to \infty \) [\text{“no-regret” algorithm}].

What can we use this for?
- Can use to combine multiple algorithms to do nearly as well as best in hindsight.
- Can apply RWM in situations where experts are making choices that cannot be combined.
 - Choose expert \(i \) with probability \(p_i = w_i / \sum w_i \).
 - E.g., repeated game-playing, repeated strategy-choosing. (Alg generalizes to case where in each time step, each expert gets a cost in [0,1])

Repeated play of matrix game
- Let’s use a no-regret alg.
- Time-average performance guaranteed to approach minimax value \(V \) of game (or better, if life isn’t adversarial).
 - In fact, existence of no-regret alg yields proof of minimax thm....
A natural generalization

- A natural generalization of this setting: say we have a list of n prediction rules, but not all rules fire on any given example.
- E.g., document classification. Rule: "If <word-X> appears then predict <Y>". E.g., if has football then classify as sports.
- E.g., path-planning: "on snowy days, use this route".
- Natural goal: simultaneously, for each rule i, guarantee to do nearly as well as it on the first time steps in which it fires.
 - For all i, want \(E[\text{cost}(\text{alg})] \leq (1+\varepsilon) \text{cost}(i) + O(\varepsilon n \log n) \).
- So, if 80% of documents with football are about sports, we should have error \(\leq 21\% \) on them.
 "Specialists" or "sleeping experts" problem.

Why does this work?

- Update weights:
 - If didn’t fire, leave weight alone.
 - If did fire, raise or lower depending on performance compared to weighted average:
 \[R_i = \frac{\sum_j p_j \text{cost}(j)/(1+\varepsilon) - \text{cost}(i)}{\text{w}(i)(1+\varepsilon)} \]
 - \(\text{w}(i) \leftarrow w(i)(1+\varepsilon) \)
- Can then prove that total sum of weights never goes up.
- One way to look at weights:
 - \(\text{w}(i) \leftarrow (1+\varepsilon)\frac{\text{cost}(\text{alg})}{\text{cost}(i)} \)
 - I.e., we are explicitly giving large weights to rules for which we have large regret.
 - Since sum of weights \(\leq n \), exponent must be \(\leq \log_\varepsilon n \).
 - This implies our bound: \(E[\text{cost}(\text{alg})] \leq (1+\varepsilon)\text{cost}(i) + O(\varepsilon n \log n) \).

A natural generalization

Generalized version of randomized WM:

- Initialize all rules to have weight 1.
- At each time step, of the rules i that fire, select one with probability \(p_i \propto w_i \).
- Update weights:
 - If didn’t fire, leave weight alone.
 - If did fire, raise or lower depending on performance compared to weighted average:
 \[R_i = \frac{\sum_j p_j \text{cost}(j)/(1+\varepsilon) - \text{cost}(i)}{\text{w}(i)(1+\varepsilon)} \]
 \[\text{w}(i) \leftarrow w(i)(1+\varepsilon) \]
 - So, if rule i does exactly as well as weighted average, its weight drops a little. Weight increases if does better than weighted average by more than a \((1+\varepsilon) \) factor.
 - Can then prove that total sum of weights never goes up.

More general forms of regret

1. "best expert" or "external" regret:
 - Given n strategies. Compete with best of them in hindsight.
2. "sleeping expert" or "regret with time-intervals":
 - Given n strategies, k properties. Let \(S_i \) be set of days satisfying property i (might overlap).
 - Want to simultaneously achieve low regret over each \(S_i \).
3. "internal" or "swap" regret: like (2), except that \(S_i \) = set of days in which we chose strategy i.

Internal/swap-regret

- E.g., each day we pick one stock to buy shares in.
 - Don’t want to have regret of the form "every time I bought IBM, I should have bought Microsoft instead".
- Real motivation: connection to correlated equilibria.
 - Distribution over entries in matrix, such that if a trusted party chooses one at random and tells you your part, you have no incentive to deviate.
 - E.g., Shapley game.
Internal/swap-regret, contd

- If all parties run a low internal/swap regret algorithm, then empirical distribution of play is an apx correlated equilibrium.
 - Correlator chooses random time $t \in \{1,2,...,T\}$. Tells each player to play the action j they played in time t (but does not reveal value of t).
 - Expected incentive to deviate: $\sum_j \Pr(j)(\text{Regret}_j) = \text{swap-regret of algorithm}$
 - So, this gives a nice distributed way to get apx correlated equilibria in multiplayer games.

Internal/swap-regret, contd

Algorithms for achieving low regret of this form:
- Foster & Vohra, Hart & Mas-Colell, Fudenberg & Levine.
- Can also convert any "best expert" algorithm into one achieving low swap regret.
- Unfortunately, time to achieve ε regret is linear in n rather than $\log(n)$...