15-853: Algorithms in the Real World

Data Compression IV.5

Compression Outline

- Introduction: Lossy vs. Lossless, Benchmarks, ...
- Information Theory: Entropy, etc.
- Probability Coding: Huffman + Arithmetic Coding
- Applications of Probability Coding: PPM + others
- Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
- Other Lossless Algorithms: Burrows-Wheeler
- Lossy algorithms for images: JPEG, MPEG, ...
 - Scalar and vector quantization
 - JPEG and MPEG
- Compressing graphs and meshes: BBK

Scalar Quantization

Quantize regions of values into a single value:

<table>
<thead>
<tr>
<th>uniform</th>
<th>non uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>output</td>
</tr>
</tbody>
</table>

Can be used to reduce # of bits for a pixel

Vector Quantization

In

Generate Vector

Find closest code vector

Generate Output

Out

Encode

Index Codebook

Decode
Vector Quantization

What do we use as vectors?
- Color (Red, Green, Blue)
 - Can be used, for example to reduce 24bits/pixel to 8bits/pixel
 - Used in some terminals to reduce data rate from the CPU (colormaps)
- K consecutive samples in audio
- Block of K pixels in an image
How do we decide on a codebook
- Typically done with clustering

Linear Transform Coding

Want to encode values over a region of time or space
- Typically used for images or audio
Select a set of linear basis functions \(\phi \), that span the space
- \(\sin, \cos, \) spherical harmonics, wavelets, ...
- Defined at discrete points

Coefficients:

\[
\Theta_i = \sum_j x_j \phi_i (j) = \sum_j x_j a_{ij}
\]

\(\Theta_i = i^{th} \) resulting coefficient
\(x_j = j^{th} \) input value
\(a_{ij} = ij^{th} \) transform coefficient = \(\phi (j) \)

In matrix notation:

\[
\Theta = Ax
\]

\(x = A^{-1} \Theta \)

Where \(A \) is an \(n \times n \) matrix, and each row defines a basis function
Example: Cosine Transform

\[\phi_0(j) \quad \phi_1(j) \quad \phi_2(j) \quad \ldots \]

\[x_j \quad \Theta_1 = \sum_j x_j \phi_1(j) \]

Other Transforms

Polynomial:

\[1 \quad x \quad x^2 \]

Wavelet (Haar):

How to Pick a Transform

Goals:
- Decorrelate
- Low coefficients for many terms
- Basis functions that can be ignored by perception

Why is using a Cosine of Fourier transform across a whole image bad?
How might we fix this?

Usefulness of Transform

Typically transforms \(A \) are **orthonormal**: \(A^T = A \)

Properties of orthonormal transforms:

\[\sum x^2 = \sum \Theta^2 \] (energy conservation)

Would like to compact energy into as few coefficients as possible

\[G_{TC} = \frac{1}{n} \sum \frac{\sigma_i^2}{\prod \sigma^2_i} \] (the **transform coding gain**)

\[\sigma_i = (\Theta_i - \Theta_o) \]

The higher the gain, the better the compression
Case Study: JPEG

A nice example since it uses many techniques:
- Transform coding (Cosine transform)
- Scalar quantization
- Difference coding
- Run-length coding
- Huffman or arithmetic coding

JPEG (Joint Photographic Experts Group) was designed in 1991 for *lossy* and *lossless* compression of color or grayscale images. The lossless version is rarely used.

Can be adjusted for compression ratio (typically 10:1)

JPEG: Quantization Table

<table>
<thead>
<tr>
<th>16</th>
<th>11</th>
<th>10</th>
<th>16</th>
<th>24</th>
<th>40</th>
<th>51</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>14</td>
<td>19</td>
<td>26</td>
<td>58</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>16</td>
<td>24</td>
<td>40</td>
<td>57</td>
<td>69</td>
<td>56</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>22</td>
<td>29</td>
<td>51</td>
<td>87</td>
<td>80</td>
<td>62</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>37</td>
<td>56</td>
<td>68</td>
<td>109</td>
<td>103</td>
<td>77</td>
</tr>
<tr>
<td>24</td>
<td>35</td>
<td>55</td>
<td>64</td>
<td>81</td>
<td>104</td>
<td>113</td>
<td>92</td>
</tr>
<tr>
<td>49</td>
<td>64</td>
<td>78</td>
<td>87</td>
<td>103</td>
<td>121</td>
<td>120</td>
<td>101</td>
</tr>
<tr>
<td>72</td>
<td>92</td>
<td>95</td>
<td>98</td>
<td>112</td>
<td>100</td>
<td>103</td>
<td>99</td>
</tr>
</tbody>
</table>

Also divided through uniformaly by a quality factor which is under control.

JPEG in a Nutshell

![JPEG flowchart](image)

For each plane

JPEG: Block scanning order

Uses run-length coding for sequences of zeros
JPEG: example

.125 bits/pixel (factor of 200)

Case Study: MPEG

Pretty much JPEG with **interframe coding**

Three types of frames
- I = intra frame (aprox. JPEG) anchors
- P = predictive coded frames
- B = bidirectionally predictive coded frames

Example:

Type: I B B P B B P B B B B I

Order: 1 3 4 2 6 7 5 9 10 8 12 13 11

I frames are used for random access.

MPEG matching between frames

MPEG: Compression Ratio

356 x 240 image

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>18KB</td>
<td>7/1</td>
</tr>
<tr>
<td>P</td>
<td>6KB</td>
<td>20/1</td>
</tr>
<tr>
<td>B</td>
<td>2.5KB</td>
<td>50/1</td>
</tr>
<tr>
<td>Average</td>
<td>4.8KB</td>
<td>27/1</td>
</tr>
</tbody>
</table>

30 frames/sec x 4.8KB/frame x 8 bits/byte = 1.2 Mbits/sec + .25 Mbits/sec (stereo audio)

HDTV has 15x more pixels = 18 Mbits/sec
MPEG in the “real world”

- DVDs
 - Adds “encryption” and error correcting codes
- Direct broadcast satellite
- HDTV standard
 - Adds error correcting code on top
- Storage Tech “Media Vault”
 - Stores 25,000 movies

Encoding is much more expensive than encoding. Still requires special purpose hardware for high resolution and good compression.

Wavelet Compression

- A set of localized basis functions
- Avoids the need to block

mother function \(\phi(x) \)

\[\phi_s(x) = \phi(2^s x - l) \]

\(s \) = scale \quad \(l \) = location

Requirements

\[\int_{-\infty}^{\infty} \psi(x) dx = 0 \quad \text{and} \quad \int_{-\infty}^{\infty} |\psi(x)|^2 dx < -\infty \]

Many mother functions have been suggested.

Haar Wavelets

Most described, least used.

\[\phi(x) = \begin{cases}
1 & 0 \leq x < 1/2 \\
-1 & 1/2 \leq x < 1 \\
0 & \text{otherwise}
\end{cases} \]

\[H_0(x) = \phi(2^s x - l) \]

Haar Wavelet in 2d
Discrete Haar Wavelet Transform

How do we convert this to the wavelet coefficients?

\[
\begin{align*}
 H_0 & : 0 \\
 H_1 & : 5 \\
 H_2 & : 75
\end{align*}
\]

Discrete Haar Wavelet Transform

How do we convert this to the wavelet coefficients?

```cpp
for (j = n/2; j >= 1; j = j/2) {
    for (i = 1; i < j; i++) {
        b[i] = (a[2i-1] + a[2i])/2;
        b[j+i] = (a[2i-1] - a[2i])/2;
    }
    a[1..2*j] = b[1..2*j];
}
```

Haar Wavelet Transform: example

\[
\begin{align*}
 a & : 2 \ 1 \ 2 \ -1 \ -2 \ 0 \ 2 \ -2 \\
 & : 1.5 \ 5 \ -1 \ 0 \ .5 \ 15 \ -1 \ 2 \\
 & : 1 \ -5 \ .5 \ -5 \\
 & : .25 \ .75 \\
 a & : .25 \ .75 \ .5 \ .5 \ .5 \ 1.5 \ -1 \ 2
\end{align*}
\]

Wavelet decomposition

Linear time!

\[
\begin{align*}
 8 & \quad 8 \\
 5 & \quad 1 \\
 25 & \quad 75
\end{align*}
\]
Morlet Wavelet

\[\phi(x) = \text{Gaussian} \cdot \text{Cosine} = e^{-\frac{x^2}{2}} \cos(5x) \]

Corresponds to wavepackets in physics.

Daubechies Wavelet

JPEG2000

Overall Goals:
- High compression efficiency with good quality at compression ratios of .25bpp
- Handle large images (up to \(2^{32} \times 2^{32}\))
- Progressive image transmission
 - Quality, resolution or region of interest
- Fast access to various points in compressed stream
- Pan and Zoom while only decompressing parts
- Error resilience

JPEG2000: Outline

Main similarities with JPEG
- Separates into Y, I, Q color planes, and can downsample the I and Q planes
- Transform coding

Main differences with JPEG
- Wavelet transform
 - Daubechies 9-tap/7-tap (irreversible)
 - Daubechies 5-tap/3-tap (reversible)
- Many levels of hierarchy (resolution and spatial)
- Only arithmetic coding
JPEG2000: 5-tap/3-tap

\[
h[i] = a[2i-1] - (a[2i] + a[2i-2])/2;
\]

\[
l[i] = a[2i] + (h[i-1] + h[i] + 2)/2;
\]

- \(h[i] \): is the "high pass" filter, i.e., the **differences**
 - it depends on 3 values from a (3-tap)
- \(l[i] \): is the "low pass" filter, i.e., the **averages**
 - it depends on 5 values from a (5-tap)

Need to deal with boundary effects.
This is reversible: assignment

JPEG 2000: Outline

- **A spatial and resolution hierarchy**
 - **Tiles**: Makes it easy to decode sections of an image. For our purposes we can imagine the whole image as one tile.
 - **Resolution Levels**: These are based on the wavelet transform. High-detail vs. Low detail.
 - **Precinct Partitions**: Used within each resolution level to represent a region of space.
 - **Code Blocks**: blocks within a precinct
 - **Bit Planes**: ordering of significance of the bits

JPEG2000: Precincts

![Precinct](image)

JPEG vs. JPEG2000

![JPEG: .125bpp](image)

![JPEG2000: .125bpp](image)
Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, ...
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

Compressing Structured Data

So far we have concentrated on Text and Images, compressing sound is also well understood.
What about various forms of "structured" data?
- Web indexes
- Triangulated meshes used in graphics
- Maps (mapquest on a palm)
- XML
- Databases

Compressing Graphs

Goal: To represent large graphs compactly while supporting queries efficiently
- e.g., adjacency and neighbor queries

Applications:
- Large web graphs
- Large meshes
- Phone call graphs

Results

$O(n)$-bit compression on "separable graphs" with n vertices, with $O(1)$ access time
Experimental results:
- 6-12 bits/edge in total
- Access time faster than linked-list representation
Vertex Separators

A vertex separator for $G=(V,E)$ is a set of vertices $U \subset V$, that partitions V/U into two components V_1 and V_2.

A class of graphs S satisfies a $f(n)$-vertex separator theorem if
\[
\exists \alpha \in (0,1), \beta > 0 \forall (V,E) \in S, \exists \text{ separator } U, |U| < \beta f(|V|), |V_i| < \alpha |V|, i = 1,2
\]

A separable class of graphs is one that satisfies an n^α-separator theorem, $c < 1$.

Separable Classes of Graphs

Planar graphs: $O(n^{1/2})$ separators
Well-shaped meshes in R^2: $O(n^{1/2})$ [Miller et al.]
Nearest-neighbor graphs
In practice, good separators from circuit graphs, street graphs, web connectivity graphs, router connectivity graphs

Note: All separable classes of graphs have bounded density ($m = O(n)$)

Edge Separators

An edge separator for (V,E) is a set of edges $E' \subset E$ whose removal partitions V into two components V_1 and V_2.

A class of graphs S satisfies an $f(n)$-edge separator theorem if
\[
\exists \alpha \in (0,1), \beta > 0 \forall (V,E) \in S, \exists \text{ separator } E', |E'| < \beta f(|V|), |V_i| < \alpha |V|, i = 1,2
\]

Any class of graphs that satisfies an edge separator theorem satisfies the corresponding vertex separator theorem as well.

Main Ideas

For good edge separators
- Number vertices using separators
- Use difference coding on adjacency lists
- Using efficient data structure for indexing

For good vertex separators
- Each vertex assigned multiple labels
- Separate "root-find" data structure to map labels to a representative
- For adjacency queries, may need to direct graph
Compressed Adjacency Tables

<table>
<thead>
<tr>
<th>#</th>
<th>D</th>
<th>Neighbors</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>3 4</td>
<td>3 1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5 6 8</td>
<td>3 1 12</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0 7</td>
<td>-3 7</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0 1 7 8</td>
<td>-4 1 0 1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1 6 8</td>
<td>-4 5 2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1 2 5</td>
<td>-5 1 3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3 4 8</td>
<td>-4 1 4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1 4 5 7</td>
<td>-7 3 1 2</td>
</tr>
</tbody>
</table>

Compressed Adjacency Tables

<table>
<thead>
<tr>
<th>#</th>
<th>D</th>
<th>Neighbors</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0 2 3</td>
<td>-2 1 1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1 3 4</td>
<td>-2 1 1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1 2 4 5</td>
<td>-1 2 2 1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2 3 5 6</td>
<td>-2 1 2 1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3 4 6 7</td>
<td>-2 1 2 1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4 5 8</td>
<td>-2 1 3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5 8</td>
<td>-2 3</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>6 7</td>
<td>-2 1</td>
</tr>
</tbody>
</table>

Log-sized Codes

Log-sized code: Any prefix code that takes $O(\log(d))$ bits to represent an integer d.
Gamma code, delta code, skewed Bernoulli code

Example: Gamma code
Prefix: unary code for $\lfloor \log d \rfloor$
Suffix: binary code for $d - 2^{\lfloor \log d \rfloor}$
(binary code for d, except leading 1 is implied)

<table>
<thead>
<tr>
<th>Decima</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>01</td>
</tr>
<tr>
<td>3</td>
<td>01</td>
</tr>
<tr>
<td>4</td>
<td>0 001</td>
</tr>
<tr>
<td>5</td>
<td>00101</td>
</tr>
<tr>
<td>6</td>
<td>0011</td>
</tr>
<tr>
<td>7</td>
<td>00111</td>
</tr>
<tr>
<td>8</td>
<td>001100</td>
</tr>
</tbody>
</table>

Difference Coding

For each vertex, encode:
- Degree
- Sign of first entry
- Differences in adjacency list

Concatenate vertex encodings to encode the graph

<table>
<thead>
<tr>
<th>#</th>
<th>D</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>3 1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-4 1 6 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>D</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>0 01 1 1</td>
</tr>
<tr>
<td>1</td>
<td>00100</td>
<td>degree sign 3 1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>00110 1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1 6 1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-4 1 6 1</td>
</tr>
</tbody>
</table>

15-853
Indexing

Problem: We need to find the start of a vertex quickly.

Formally: Given \(n \) numbers in range \(1 \ldots O(n) \), prepare a data structure that returns the \(k^{th} \) smallest number.

Can be supported with \(O(n) \) bits and \(O(1) \) access time.

Renumbering with Edge Separators

![Diagram](image1.png)

Renumbering with Edge Separators

![Diagram](image2.png)

Renumbering with Edge Separators

![Diagram](image3.png)

Renumbering with Edge Separators

![Diagram](image4.png)
Renumbering with Edge Separators

Proof Outline
Bound cost of adjacency lists: cost of edge \((a, b)\) is at most \(O(\log(|a-b|))\)
If an edge is a separator in a graph of size \(d\), then its cost is at most \(\log(d)\)

\[n^2 \text{ edges in separator: cost } n^2 \log(n) \]
\[T(n) = n^2 \log(n) + 2T(n/2) \]
\[= O(n) \]

Theorem (edge separators)
Any class of graphs that allows \(O(n^2)\) edge separators can be compressed to \(O(n)\) bits with \(O(1)\) access time using:
- Difference coded adjacency lists
- \(O(n)\)-bit indexing structure

Experimental Results: Test Graphs

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vtxs</th>
<th>Edges</th>
<th>Max Degree</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>448695</td>
<td>3314611</td>
<td>37</td>
<td>3D mesh [28]</td>
</tr>
<tr>
<td>feocean</td>
<td>143437</td>
<td>409593</td>
<td>6</td>
<td>3D mesh [28]</td>
</tr>
<tr>
<td>m14b</td>
<td>214765</td>
<td>1679018</td>
<td>40</td>
<td>3D mesh [28]</td>
</tr>
<tr>
<td>ibm17</td>
<td>185495</td>
<td>2235716</td>
<td>150</td>
<td>circuit [2]</td>
</tr>
<tr>
<td>ibm18</td>
<td>210613</td>
<td>2221860</td>
<td>173</td>
<td>circuit [2]</td>
</tr>
<tr>
<td>CA</td>
<td>1971281</td>
<td>2766667</td>
<td>12</td>
<td>street map [27]</td>
</tr>
<tr>
<td>PA</td>
<td>1090920</td>
<td>1541898</td>
<td>9</td>
<td>street map [27]</td>
</tr>
<tr>
<td>googleI</td>
<td>916428</td>
<td>5105039</td>
<td>6326</td>
<td>web links [9]</td>
</tr>
<tr>
<td>googleO</td>
<td>916428</td>
<td>5105039</td>
<td>456</td>
<td>web links [9]</td>
</tr>
<tr>
<td>lucent</td>
<td>112969</td>
<td>181629</td>
<td>429</td>
<td>routers [24]</td>
</tr>
<tr>
<td>scan</td>
<td>228298</td>
<td>320168</td>
<td>1037</td>
<td>routers [24]</td>
</tr>
</tbody>
</table>
Performance: Adjacency Table

<table>
<thead>
<tr>
<th></th>
<th>c_{df}</th>
<th>metric cf</th>
<th>bu-bpq</th>
<th>bu-cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Space</td>
<td>Time/Space</td>
<td>Time/Space</td>
<td>Time/Space</td>
</tr>
<tr>
<td>auto</td>
<td>0.79 9.88</td>
<td>153.11 5.17</td>
<td>7.54 9.50</td>
<td>14.59 5.52</td>
</tr>
<tr>
<td>freecesn</td>
<td>0.06 13.88</td>
<td>358.88 7.66</td>
<td>17.16 8.45</td>
<td>34.83 7.79</td>
</tr>
<tr>
<td>m14b</td>
<td>0.31 10.66</td>
<td>314.44 6.41</td>
<td>8.16 5.45</td>
<td>15.32 5.13</td>
</tr>
<tr>
<td>ibn17</td>
<td>0.44 13.04</td>
<td>336.81 6.18</td>
<td>11.0 6.79</td>
<td>20.26 6.64</td>
</tr>
<tr>
<td>ibn18</td>
<td>0.48 11.88</td>
<td>329.22 5.77</td>
<td>8.5 6.24</td>
<td>17.19 6.13</td>
</tr>
<tr>
<td>CA</td>
<td>0.76 8.41</td>
<td>362.67 4.38</td>
<td>14.63 4.90</td>
<td>34.31 4.29</td>
</tr>
<tr>
<td>PA</td>
<td>0.43 8.47</td>
<td>304.06 4.45</td>
<td>13.56 4.98</td>
<td>33.02 4.57</td>
</tr>
<tr>
<td>google</td>
<td>1.4 7.44</td>
<td>180.91 4.69</td>
<td>12.71 4.18</td>
<td>40.96 6.14</td>
</tr>
<tr>
<td>googleO</td>
<td>1.4 11.03</td>
<td>186.91 6.78</td>
<td>12.71 6.21</td>
<td>40.96 6.66</td>
</tr>
<tr>
<td>lucent</td>
<td>0.04 7.56</td>
<td>305.75 5.62</td>
<td>19.5 5.44</td>
<td>45.75 5.44</td>
</tr>
<tr>
<td>scan</td>
<td>0.12 3.00</td>
<td>280.25 5.94</td>
<td>23.33 5.76</td>
<td>31.75 5.66</td>
</tr>
<tr>
<td>Avg</td>
<td>10.02 5.62</td>
<td>253.78 5.62</td>
<td>13.85 5.86</td>
<td>34.54 5.56</td>
</tr>
</tbody>
</table>

Time is to create the structure, normalized to time for DFS.

Conclusions

O(n)-bit representation of separable graphs with O(1)-time queries

Space efficient and fast in practice for a wide variety of graphs.

Compression Summary

Compression is all about **probabilities**

We want the model to skew the probabilities as much as possible (*i.e.*, decrease the entropy)

\[
|w| = h_{w}(s) = -\log p(s)
\]
Compression Summary

How do we figure out the probabilities
- Transformations that skew them
 - Guess value and code difference
 - Move to front for temporal locality
 - Run-length
 - Linear transforms (Cosine, Wavelet)
 - Renumber (graph compression)
- Conditional probabilities
 - Neighboring context

In practice one almost always uses a combination of techniques