15-853: Algorithms in the Real World

Data Compression IV.5

15-853 Page 1

Compression Outline

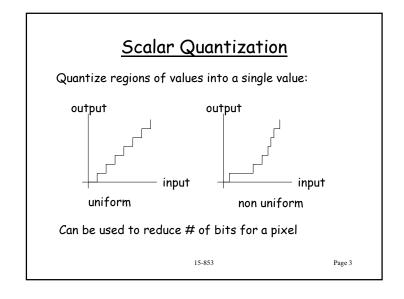
Introduction: Lossy vs. Lossless, Benchmarks, ...

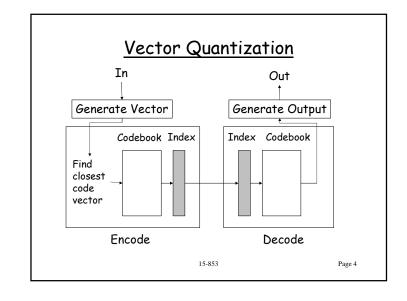
Information Theory: Entropy, etc.

Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...

- Scalar and vector quantization
- JPEG and MPEG

Compressing graphs and meshes: BBK





Vector Quantization

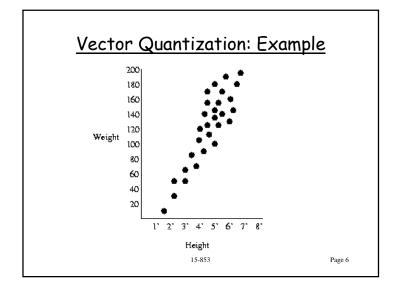
What do we use as vectors?

- · Color (Red, Green, Blue)
 - Can be used, for example to reduce 24bits/pixel to 8bits/pixel
 - Used in some terminals to reduce data rate from the CPU (colormaps)
- · K consecutive samples in audio
- · Block of K pixels in an image

How do we decide on a codebook

· Typically done with clustering

Page 5



Linear Transform Coding

15-853

Want to encode values over a region of time or space

- Typically used for images or audio

Select a set of linear basis functions $\phi_{\rm i}{\rm that}$ span the space

- sin, cos, spherical harmonics, wavelets, ...
- Defined at discrete points

15-853 Page 7

Linear Transform Coding

Coefficients:
$$\Theta_i = \sum_i x_j \phi_i(j) = \sum_i x_j a_{ij}$$

 $\Theta_i = i^{th}$ resulting coefficient

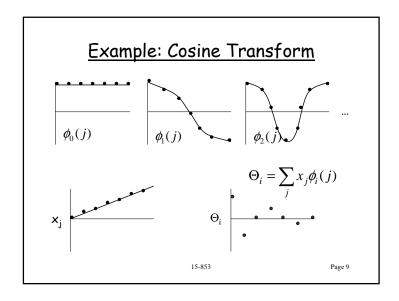
 $x_i = j^{th}$ input value

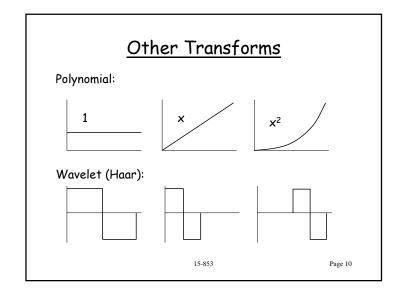
 $a_{ij} = ij^{th} \text{ transform coefficient} = \phi_i(j)$

 $\Theta = Ax$ In matrix notation:

 $x = A^{-1}\Theta$

Where A is an n x n matrix, and each row defines a basis function





How to Pick a Transform

Goals:

- Decorrelate
- Low coefficients for many terms
- Basis functions that can be ignored by perception

Why is using a Cosine of Fourier transform across a whole image bad?

How might we fix this?

15-853 Page 11

Usefulness of Transform

Typically transforms A are <u>orthonormal</u>: $A^{-1} = A^T$

<u>Properties of orthonormal transforms</u>:

 $\sum x^2 = \sum \Theta^2$ (energy conservation)

Would like to compact energy into as few coefficients as possible

$$G_{TC} = \frac{\frac{1}{n} \sum \sigma_i^2}{\left(\prod \sigma_i^2\right)_n^{1/n}}$$

(the <u>transform coding gain</u>) arithmetic mean/geometric mean

$$\sigma_i = (\Theta_i - \Theta_{av})$$

The higher the gain, the better the compression

Case Study: JPEG

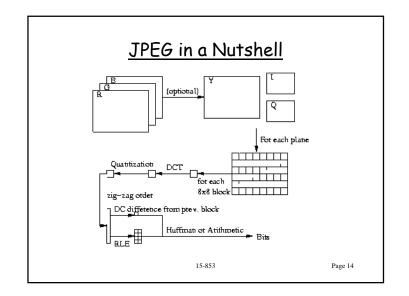
A nice example since it uses many techniques:

- Transform coding (Cosine transform)
- Scalar quantization
- Difference coding
- Run-length coding
- Huffman or arithmetic coding

JPEG (Joint Photographic Experts Group) was designed in 1991 for lossy and lossless compression of color or grayscale images. The lossless version is rarely used.

Can be adjusted for compression ratio (typically 10:1)

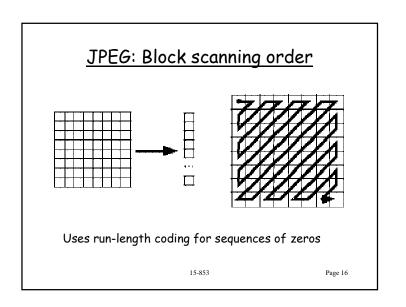
15-853 Pag



JPEG: Quantization Table

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Also divided through uniformaly by a quality factor which is under control.



JPEG: example

.125 bits/pixel (factor of 200)

15-853

Page 17

Case Study: MPEG

Pretty much JPEG with interframe coding Three types of frames

- I = intra frame (aprox. JPEG) anchors
- P = predictive coded frames
- B = bidirectionally predictive coded frames

Example:

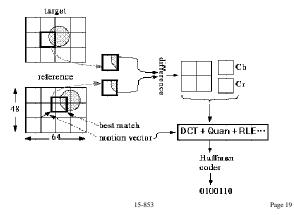
Type: I B B P B B P B B P B B I

Order: 1 3 4 2 6 7 5 9 10 8 12 13 11

I frames are used for random access.

15-853 Page 18

MPEG matching between frames



MPEG: Compression Ratio

356 x 240 image

Type	Size	Compression		
I	18KB	7/1		
Р	6KB	20/1		
В	2.5KB	50/1		
Average	4.8KB	27/1		

30 frames/sec x 4.8KB/frame x 8 bits/byte

= 1.2 Mbits/sec + .25 Mbits/sec (stereo audio)

HDTV has 15x more pixels

= 18 Mbits/sec

15-853

MPEG in the "real world"

- DVDs
 - Adds "encryption" and error correcting codes
- · Direct broadcast satellite
- HDTV standard
 - Adds error correcting code on top
- Storage Tech "Media Vault"
 - Stores 25,000 movies

Encoding is much more expensive than encoding. Still requires special purpose hardware for high resolution and good compression.

Page 21

Wavelet Compression

- · A set of localized basis functions
- Avoids the need to block

"mother function" $\phi(x)$

$$\phi_{s|}(x) = \phi(2^s x - 1)$$

s = scale I = location

Requirements

$$\int_{-\infty}^{\infty} \psi(x) dx = 0 \quad \text{and} \quad \int_{-\infty}^{\infty} |\psi(x)|^2 dx < -\infty$$

Many mother functions have been suggested.

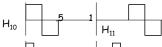
15-853

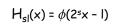
Page 22

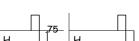
Haar Wavelets

Most described, least used.

$$\phi(x) = \begin{cases} 1 & 0 \le x < 1/2 \\ -1 & 1/2 \le x < 1 \\ 0 & \text{otherwise} \end{cases}$$



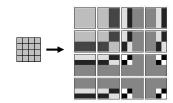




+ DC component = 2k+1 components

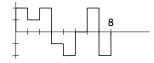
Page 23

Haar Wavelet in 2d

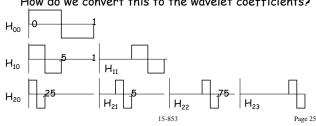


15-853

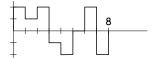
Discrete Haar Wavelet Transform



How do we convert this to the wavelet coefficients?



Discrete Haar Wavelet Transform

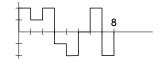


How do we convert this to the wavelet coefficients?

```
for (j = n/2; j >= 1; j = j/2) {
  for (i = 1; i < j; i++) {
     b[i] = (a[2i-1] + a[2i])/2;
     b[j+i] = (a[2i-1] - a[2i])/2; }
  a[1..2*j] = b[1..2*j]; }
Linear time!</pre>
```

53 Page 26

Haar Wavelet Transform: example



= .25 .75

 $\alpha = .25 .75 .5 .5 .5 1.5 -1 2$

15-853 Page 27

Wavelet decomposition

Morlet Wavelet

$$\phi(x)$$
 = Gaussian · Cosine = $e^{-(x^2/2)}\cos(5x)$

Corresponds to wavepackets in physics.

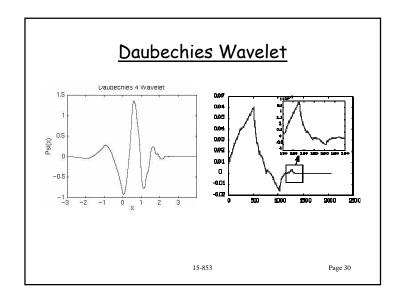
15-853 Page 29

JPEG2000

Overall Goals:

- High compression efficiency with good quality at compression ratios of .25bpp
- Handle large images (up to $2^{32} \times 2^{32}$)
- Progressive image transmission
 - $\boldsymbol{\cdot}$ Quality, resolution or region of interest
- Fast access to various points in compressed stream
- Pan and Zoom while only decompressing parts
- Error resilience

15-853 Page 31



JPEG2000: Outline

Main similarities with JPEG

- Separates into Y, I, Q color planes, and can downsample the I and Q planes
- · Transform coding

Main differences with JPEG

- · Wavelet transform
 - Daubechies 9-tap/7-tap (irreversible)
 - Daubechies 5-tap/3-tap (reversible)
- Many levels of hierarchy (resolution and spatial)
- · Only arithmetic coding

JPEG2000: 5-tap/3-tap

h[i] = a[2i-1] - (a[2i] + a[2i-2])/2;l[i] = a[2i] + (h[i-1] + h[i] + 2)/2;

h[i]: is the "high pass" filter, ie, the differences it depends on 3 values from a (3-tap)

1[i]: is the "low pass" filter, ie, the averages it depends on 5 values from a (5-tap)

Need to deal with boundary effects. This is reversible: assignment

15-853 Page 33

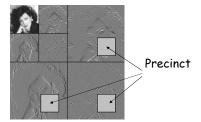
JPEG 2000: Outline

A spatial and resolution hierarchy

- Tiles: Makes it easy to decode sections of an image. For our purposes we can imagine the whole image as one tile.
- Resolution Levels: These are based on the wavelet transform. High-detail vs. Low detail.
- **Precinct Partitions:** Used within each resolution level to represent a region of space.
- Code Blocks: blocks within a precinct
- Bit Planes: ordering of significance of the bits

15-853 Page 34

JPEG2000: Precincts



15-853 Page 35

JPEG vs. JPEG2000

JPEG2000: .125bpp

Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, ...

Information Theory: Entropy, etc.

Probability Coding: Huffman + Arithmetic Coding Applications of Probability Coding: PPM + others Lempel-Ziv Algorithms: LZ77, gzip, compress, ... Other Lossless Algorithms: Burrows-Wheeler Lossy algorithms for images: JPEG, MPEG, ...

Compressing graphs and meshes: BBK

15-853 Page 37

Compressing Graphs

<u>Goal:</u> To represent large graphs compactly while supporting queries efficiently

- e.g., adjacency and neighbor queries

Applications:

- Large web graphs
- Large meshes
- Phone call graphs

15-853 Page 39

Compressing Structured Data

So far we have concentrated on Text and Images, compressing sound is also well understood.

What about various forms of "structured" data?

- Web indexes
- Triangulated meshes used in graphics
- Maps (mapquest on a palm)
- XML
- Databases

Page 38

15-853

Results

O(n)-bit compression on "separable graphs" with n vertices, with O(1) access time

Experimental results:

- 6-12 bits/edge in total
- access time faster than linked-list representation

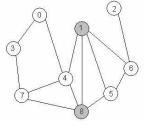
Vertex Separators

 $\begin{array}{l} A \ \underline{\mathit{vertex\ separator}}\ \text{for\ } G\text{=}(V,E)\ \text{is}\\ \text{a\ set\ of\ vertices}\ U \subset V,\ \text{that}\\ \text{partitions\ } V/U\ \text{into\ two}\\ \text{components\ } V_1\ \text{and\ } V_2 \end{array}$

A class of graphs S satisfies a <u>f(n)-vertex separator theorem</u> if

., d < 1, β > 0 ∀ (V,E) ∈ S, ∃ separator U, |U| < β f(|V|), |V_i| < α|V|, i = 1,2

A <u>separable class of graphs</u> is one that satisfies an n^c-separator theorem, c<1.



Page 41

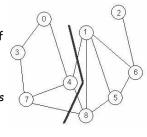
Edge Separators

An $\underline{edge\ separator}$ for (V,E) is a set of edges $E'\subset E$ whose removal partitions V into two components V_1 and V_2

A class of graphs S satisfies a <u>f(n)-edge separator theorem</u> if

 $\exists \alpha < 1, \beta > 0$ $\forall (V,E) \in S, \exists separator E',$ $|E'| < \beta f(|V|),$ $|V_i| < \alpha |V|, i = 1,2$

Any class of graphs that satisfies an edge separator theorem satisfies the corresponding vertex separator theorem as well.



Page 42

Separable Classes of Graphs

15-853

Planar graphs: O(n1/2) separators

Well-shaped meshes in R^d : $O(n^{1-1/d})$ [Miller et al.]

Nearest-neighbor graphs

In practice, good separators from circuit graphs, street graphs, web connectivity graphs, router connectivity graphs

Note: All separable classes of graphs have bounded density (m is O(n))

15-853 Page 43

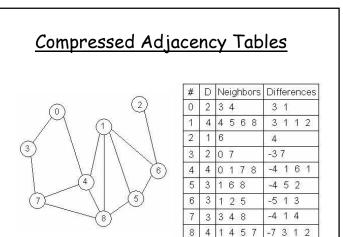
Main Ideas

For good edge separators

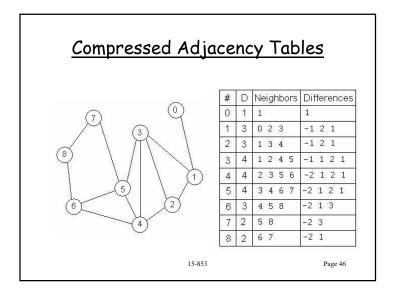
- Number vertices using separators
- Use difference coding on adjacency lists
- Using efficient data structure for indexing

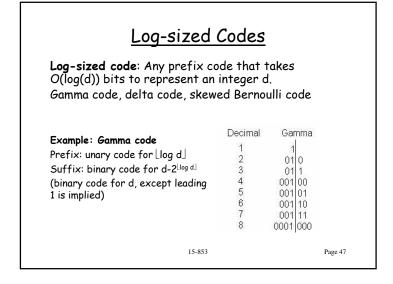
For good vertex separators

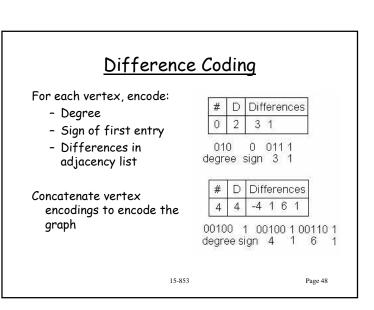
- Each vertex assigned multiple labels
- Separate "root-find" data structure to map labels to a representative
- For adjacency queries, may need to direct graph

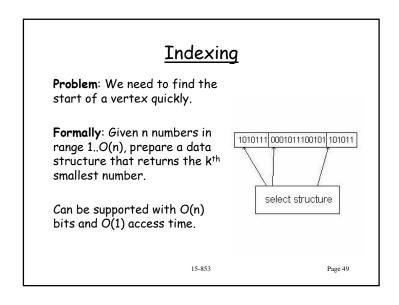


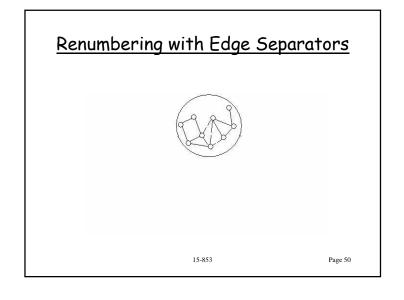
15-853

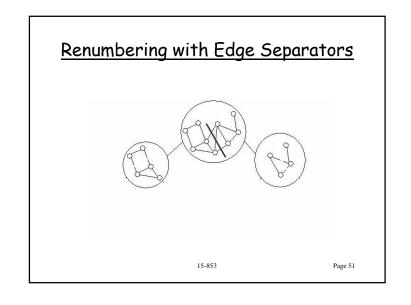


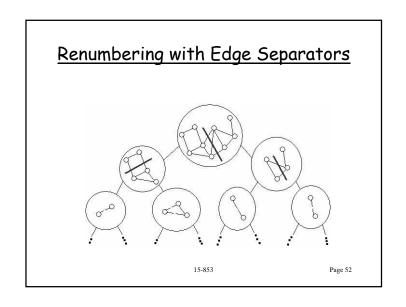


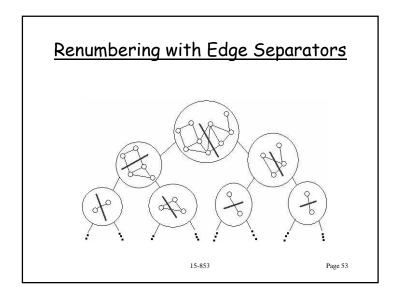












Theorem (edge separators)

Any class of graphs that allows $O(n^c)$ edge separators can be compressed to O(n) bits with O(1) access time using:

- Difference coded adjacency lists
- O(n)-bit indexing structure

15-853 Page 54

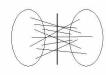
Proof Outline

Bound cost of adjacency lists: cost of edge (a,b) is at most $O(\log(|a-b|))$

If an edge is a separator in a graph of size d, then its cost is at most log(d)

n° edges in separator: cost n° log(n)

 $T(n)=n^{c} log(n) + 2T(n/2)$ = O(n)



15-853 Page 55

Experimental Results: Test Graphs

			Max	
Graph	Vtxs	Edges	Degree	Source
auto	448695	3314611	37	3D mesh [28]
feocean	143437	409593	6	3D mesh [28]
m14b	214765	1679018	40	3D mesh [28]
ibm17	185495	2235716	150	circuit [2]
ibm18	210613	2221860	173	circuit [2]
CA	1971281	2766607	12	street map [27]
PA	1090920	1541898	9	street map [27]
googleI	916428	5105039	6326	web links [9]
googleO	916428	5105039	456	web links [9]
lucent	112969	181639	423	routers [24]
scan	228298	320168	1937	routers [24]

U

Performance: Adjacency Table

	dfs		meti	s-cf	bu-	bpq	bu-cf	
	T_d	Space	T/T_d	Space	T/T_d	Space	T/T_d	Space
auto	0.79	9.88	153.11	5.17	7.54	5.90	14.59	5.52
feocean	0.06	13.88	388.83	7.66	17.16	8.45	34.83	7.79
m14b	0.31	10.65	181.41	4.81	8.16	5.45	15.32	5.13
ibm17	0.44	13.01	136.43	6.18	11.0	6.79	20.25	6.64
ibm18	0.48	11.88	129.22	5.72	9.5	6.24	17.29	6.13
CA	0.76	8.41	382.67	4.38	14.61	4.90	35.21	4.29
PA	0.43	8.47	364.06	4.45	13.95	4.98	33.02	4.37
googleI	1.4	7.44	186.91	4.08	12.71	4.18	40.96	4.14
googleO	1.4	11.03	186.91	6.78	12.71	6.21	40.96	6.05
lucent	0.04	7.56	390.75	5.52	19.5	5.54	45.75	5.44
scan	0.12	8.00	280.25	5.94	23.33	5.76	81.75	5.66
Avg		10.02	252.78	5.52	13.65	5.86	34.54	5.56

Time is to create the structure, normalized to time for DFS $_{\mathrm{Paee}\,57}^{\mathrm{DFS}}$

Conclusions

O(n)-bit representation of separable graphs with O(1)-time queries

Space efficient and fast in practice for a wide variety of graphs.

15-853 Page 59

Performance: Overall

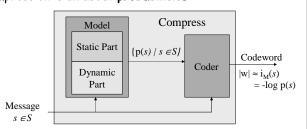
	Array		List		bu-cf/semi	
Graph	time	space	time	space	time	space
auto	0.24	34.2	0.61	66.2	0.51	7.17
feocean	0.04	37.6	0.08	69.6	0.09	11.75
m14b	0.11	34.1	0.29	66.1	0.24	6.70
ibm17	0.15	33.3	0.40	65.3	0.34	7.72
ibm18	0.14	33.5	0.38	65.5	0.32	7.33
CA	0.34	43.4	0.56	75.4	0.58	11.66
PA	0.19	43.3	0.31	75.3	0.32	11.68
googleI	0.24	37.7	0.49	69.7	0.45	7.86
googleO	0.24	37.7	0.50	69.7	0.51	9.90
lucent	0.02	42.0	0.04	74.0	0.05	11.87
scan	0.04	43.4	0.06	75.4	0.08	12.85

time is for one DFS

ge 58

Compression Summary

Compression is all about probabilities



We want the model to skew the probabilities as much as possible (*i.e.*, decrease the **entropy**)

Compression Summary

How do we figure out the probabilities

- Transformations that skew them
 - · Guess value and code difference
 - · Move to front for temporal locality
 - · Run-length
 - · Linear transforms (Cosine, Wavelet)
 - Renumber (graph compression)
- Conditional probabilities
 - Neighboring context

In practice one almost always uses a combination of techniques

15-853