# 15-853: Algorithms in the Real World

Data Compression IV.5

15-853 Page 1

# Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, ...

Information Theory: Entropy, etc.

Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...

- Scalar and vector quantization
- JPEG and MPEG

Compressing graphs and meshes: BBK





#### **Vector Quantization**

What do we use as vectors?

- · Color (Red, Green, Blue)
  - Can be used, for example to reduce 24bits/pixel to 8bits/pixel
  - Used in some terminals to reduce data rate from the CPU (colormaps)
- · K consecutive samples in audio
- · Block of K pixels in an image

How do we decide on a codebook

· Typically done with clustering

Page 5



# Linear Transform Coding

15-853

Want to encode values over a region of time or space

- Typically used for images or audio

Select a set of linear basis functions  $\phi_{\rm i}{\rm that}$  span the space

- sin, cos, spherical harmonics, wavelets, ...
- Defined at discrete points

15-853 Page 7

# Linear Transform Coding

Coefficients: 
$$\Theta_i = \sum_i x_j \phi_i(j) = \sum_i x_j a_{ij}$$

 $\Theta_i = i^{th}$  resulting coefficient

 $x_i = j^{th}$  input value

 $a_{ij} = ij^{th} \text{ transform coefficient} = \phi_i(j)$ 

 $\Theta = Ax$  In matrix notation:

 $x = A^{-1}\Theta$ 

Where A is an n x n matrix, and each row defines a basis function





### How to Pick a Transform

#### Goals:

- Decorrelate
- Low coefficients for many terms
- Basis functions that can be ignored by perception

Why is using a Cosine of Fourier transform across a whole image bad?

How might we fix this?

15-853 Page 11

## Usefulness of Transform

Typically transforms A are <u>orthonormal</u>:  $A^{-1} = A^T$ 

<u>Properties of orthonormal transforms</u>:

 $\sum x^2 = \sum \Theta^2$  (energy conservation)

Would like to compact energy into as few coefficients as possible

$$G_{TC} = \frac{\frac{1}{n} \sum \sigma_i^2}{\left(\prod \sigma_i^2\right)_n^{1/n}}$$

(the <u>transform coding gain</u>) arithmetic mean/geometric mean

$$\sigma_i = (\Theta_i - \Theta_{av})$$

The higher the gain, the better the compression

# Case Study: JPEG

A nice example since it uses many techniques:

- Transform coding (Cosine transform)
- Scalar quantization
- Difference coding
- Run-length coding
- Huffman or arithmetic coding

JPEG (Joint Photographic Experts Group) was designed in 1991 for lossy and lossless compression of color or grayscale images. The lossless version is rarely used.

Can be adjusted for compression ratio (typically 10:1)

15-853 Pag



#### JPEG: Quantization Table

| 16 | 11 | 10 | 16 | 24  | 40  | 51  | 61  |
|----|----|----|----|-----|-----|-----|-----|
| 12 | 12 | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 13 | 16 | 24 | 40  | 57  | 69  | 56  |
| 14 | 17 | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22 | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 35 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64 | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92 | 95 | 98 | 112 | 100 | 103 | 99  |

Also divided through uniformaly by a quality factor which is under control.



## JPEG: example



.125 bits/pixel (factor of 200)

15-853

Page 17

# Case Study: MPEG

Pretty much JPEG with interframe coding Three types of frames

- I = intra frame (aprox. JPEG) anchors
- P = predictive coded frames
- B = bidirectionally predictive coded frames

#### Example:

Type: I B B P B B P B B P B B I

Order: 1 3 4 2 6 7 5 9 10 8 12 13 11

I frames are used for random access.

15-853 Page 18

# MPEG matching between frames



### MPEG: Compression Ratio

#### 356 x 240 image

| Type    | Size  | Compression |  |  |
|---------|-------|-------------|--|--|
| I       | 18KB  | 7/1         |  |  |
| Р       | 6KB   | 20/1        |  |  |
| В       | 2.5KB | 50/1        |  |  |
| Average | 4.8KB | 27/1        |  |  |

30 frames/sec x 4.8KB/frame x 8 bits/byte

= 1.2 Mbits/sec + .25 Mbits/sec (stereo audio)

HDTV has 15x more pixels

= 18 Mbits/sec

15-853

### MPEG in the "real world"

- DVDs
  - Adds "encryption" and error correcting codes
- · Direct broadcast satellite
- HDTV standard
  - Adds error correcting code on top
- Storage Tech "Media Vault"
  - Stores 25,000 movies

Encoding is much more expensive than encoding. Still requires special purpose hardware for high resolution and good compression.

Page 21

# Wavelet Compression

- · A set of localized basis functions
- Avoids the need to block

"mother function"  $\phi(x)$ 

$$\phi_{s|}(x) = \phi(2^s x - 1)$$

s = scale I = location

#### Requirements

$$\int_{-\infty}^{\infty} \psi(x) dx = 0 \quad \text{and} \quad \int_{-\infty}^{\infty} |\psi(x)|^2 dx < -\infty$$

Many mother functions have been suggested.

15-853

Page 22

# Haar Wavelets

Most described, least used.

$$\phi(x) = \begin{cases} 1 & 0 \le x < 1/2 \\ -1 & 1/2 \le x < 1 \\ 0 & \text{otherwise} \end{cases}$$









+ DC component = 2k+1 components

Page 23

# Haar Wavelet in 2d



15-853

# Discrete Haar Wavelet Transform



How do we convert this to the wavelet coefficients?



# Discrete Haar Wavelet Transform



How do we convert this to the wavelet coefficients?

```
for (j = n/2; j >= 1; j = j/2) {
  for (i = 1; i < j; i++) {
     b[i] = (a[2i-1] + a[2i])/2;
     b[j+i] = (a[2i-1] - a[2i])/2; }
  a[1..2*j] = b[1..2*j]; }
Linear time!</pre>
```

53 Page 26

# Haar Wavelet Transform: example



= .25 .75

 $\alpha = .25 .75 .5 .5 .5 1.5 -1 2$ 

15-853 Page 27

# Wavelet decomposition





# Morlet Wavelet

$$\phi(x)$$
 = Gaussian · Cosine =  $e^{-(x^2/2)}\cos(5x)$ 



Corresponds to wavepackets in physics.

15-853 Page 29

### JPEG2000

#### Overall Goals:

- High compression efficiency with good quality at compression ratios of .25bpp
- Handle large images (up to  $2^{32} \times 2^{32}$ )
- Progressive image transmission
  - $\boldsymbol{\cdot}$  Quality, resolution or region of interest
- Fast access to various points in compressed stream
- Pan and Zoom while only decompressing parts
- Error resilience

15-853 Page 31



### JPEG2000: Outline

Main similarities with JPEG

- Separates into Y, I, Q color planes, and can downsample the I and Q planes
- · Transform coding

Main differences with JPEG

- · Wavelet transform
  - Daubechies 9-tap/7-tap (irreversible)
  - Daubechies 5-tap/3-tap (reversible)
- Many levels of hierarchy (resolution and spatial)
- · Only arithmetic coding

### JPEG2000: 5-tap/3-tap

h[i] = a[2i-1] - (a[2i] + a[2i-2])/2;l[i] = a[2i] + (h[i-1] + h[i] + 2)/2;

h[i]: is the "high pass" filter, ie, the differences it depends on 3 values from a (3-tap)

1[i]: is the "low pass" filter, ie, the averages it depends on 5 values from a (5-tap)

Need to deal with boundary effects. This is reversible: assignment

15-853 Page 33

#### JPEG 2000: Outline

#### A spatial and resolution hierarchy

- Tiles: Makes it easy to decode sections of an image. For our purposes we can imagine the whole image as one tile.
- Resolution Levels: These are based on the wavelet transform. High-detail vs. Low detail.
- **Precinct Partitions:** Used within each resolution level to represent a region of space.
- Code Blocks: blocks within a precinct
- Bit Planes: ordering of significance of the bits

15-853 Page 34

# JPEG2000: Precincts



15-853 Page 35

#### JPEG vs. JPEG2000







JPEG2000: .125bpp

### Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, ...

**Information Theory**: Entropy, etc.

Probability Coding: Huffman + Arithmetic Coding Applications of Probability Coding: PPM + others Lempel-Ziv Algorithms: LZ77, gzip, compress, ... Other Lossless Algorithms: Burrows-Wheeler Lossy algorithms for images: JPEG, MPEG, ...

Compressing graphs and meshes: BBK

15-853 Page 37

# Compressing Graphs

<u>Goal:</u> To represent large graphs compactly while supporting queries efficiently

- e.g., adjacency and neighbor queries

#### Applications:

- Large web graphs
- Large meshes
- Phone call graphs

15-853 Page 39

## Compressing Structured Data

So far we have concentrated on Text and Images, compressing sound is also well understood.

What about various forms of "structured" data?

- Web indexes
- Triangulated meshes used in graphics
- Maps (mapquest on a palm)
- XML
- Databases



Page 38

15-853

#### Results

O(n)-bit compression on "separable graphs" with n vertices, with O(1) access time

Experimental results:

- 6-12 bits/edge in total
- access time faster than linked-list representation

# Vertex Separators

 $\begin{array}{l} A \ \underline{\mathit{vertex\ separator}}\ \text{for\ } G\text{=}(V,E)\ \text{is}\\ \text{a\ set\ of\ vertices}\ U \subset V,\ \text{that}\\ \text{partitions\ } V/U\ \text{into\ two}\\ \text{components\ } V_1\ \text{and\ } V_2 \end{array}$ 

A class of graphs S satisfies a <u>f(n)-vertex separator theorem</u> if

., d < 1, β > 0 ∀ (V,E) ∈ S, ∃ separator U, |U| < β f(|V|), |V<sub>i</sub>| < α|V|, i = 1,2

A <u>separable class of graphs</u> is one that satisfies an n<sup>c</sup>-separator theorem, c<1.



Page 41

#### Edge Separators

An  $\underline{edge\ separator}$  for (V,E) is a set of edges  $E'\subset E$  whose removal partitions V into two components  $V_1$  and  $V_2$ 

A class of graphs S satisfies a <u>f(n)-edge separator theorem</u> if

 $\exists \alpha < 1, \beta > 0$   $\forall (V,E) \in S, \exists separator E',$   $|E'| < \beta f(|V|),$  $|V_i| < \alpha |V|, i = 1,2$ 

Any class of graphs that satisfies an edge separator theorem satisfies the corresponding vertex separator theorem as well.



Page 42

# Separable Classes of Graphs

15-853

Planar graphs: O(n1/2) separators

Well-shaped meshes in  $R^d$ :  $O(n^{1-1/d})$  [Miller et al.]

Nearest-neighbor graphs

In practice, good separators from circuit graphs, street graphs, web connectivity graphs, router connectivity graphs

Note: All separable classes of graphs have bounded density (m is O(n))

15-853 Page 43

#### Main Ideas

#### For good edge separators

- Number vertices using separators
- Use difference coding on adjacency lists
- Using efficient data structure for indexing

#### For good vertex separators

- Each vertex assigned multiple labels
- Separate "root-find" data structure to map labels to a representative
- For adjacency queries, may need to direct graph



15-853

















# Theorem (edge separators)

Any class of graphs that allows  $O(n^c)$  edge separators can be compressed to O(n) bits with O(1) access time using:

- Difference coded adjacency lists
- O(n)-bit indexing structure

15-853 Page 54

# **Proof Outline**

Bound cost of adjacency lists: cost of edge (a,b) is at most  $O(\log(|a-b|))$ 

If an edge is a separator in a graph of size d, then its cost is at most log(d)

n° edges in separator: cost n° log(n)

 $T(n)=n^{c} log(n) + 2T(n/2)$ = O(n)



15-853 Page 55

# **Experimental Results: Test Graphs**

|         |         |         | Max    |                 |
|---------|---------|---------|--------|-----------------|
| Graph   | Vtxs    | Edges   | Degree | Source          |
| auto    | 448695  | 3314611 | 37     | 3D mesh [28]    |
| feocean | 143437  | 409593  | 6      | 3D mesh [28]    |
| m14b    | 214765  | 1679018 | 40     | 3D mesh [28]    |
| ibm17   | 185495  | 2235716 | 150    | circuit [2]     |
| ibm18   | 210613  | 2221860 | 173    | circuit [2]     |
| CA      | 1971281 | 2766607 | 12     | street map [27] |
| PA      | 1090920 | 1541898 | 9      | street map [27] |
| googleI | 916428  | 5105039 | 6326   | web links [9]   |
| googleO | 916428  | 5105039 | 456    | web links [9]   |
| lucent  | 112969  | 181639  | 423    | routers [24]    |
| scan    | 228298  | 320168  | 1937   | routers [24]    |

U

# Performance: Adjacency Table

|         | dfs   |       | meti    | s-cf  | bu-     | bpq   | bu-cf   |       |
|---------|-------|-------|---------|-------|---------|-------|---------|-------|
|         | $T_d$ | Space | $T/T_d$ | Space | $T/T_d$ | Space | $T/T_d$ | Space |
| auto    | 0.79  | 9.88  | 153.11  | 5.17  | 7.54    | 5.90  | 14.59   | 5.52  |
| feocean | 0.06  | 13.88 | 388.83  | 7.66  | 17.16   | 8.45  | 34.83   | 7.79  |
| m14b    | 0.31  | 10.65 | 181.41  | 4.81  | 8.16    | 5.45  | 15.32   | 5.13  |
| ibm17   | 0.44  | 13.01 | 136.43  | 6.18  | 11.0    | 6.79  | 20.25   | 6.64  |
| ibm18   | 0.48  | 11.88 | 129.22  | 5.72  | 9.5     | 6.24  | 17.29   | 6.13  |
| CA      | 0.76  | 8.41  | 382.67  | 4.38  | 14.61   | 4.90  | 35.21   | 4.29  |
| PA      | 0.43  | 8.47  | 364.06  | 4.45  | 13.95   | 4.98  | 33.02   | 4.37  |
| googleI | 1.4   | 7.44  | 186.91  | 4.08  | 12.71   | 4.18  | 40.96   | 4.14  |
| googleO | 1.4   | 11.03 | 186.91  | 6.78  | 12.71   | 6.21  | 40.96   | 6.05  |
| lucent  | 0.04  | 7.56  | 390.75  | 5.52  | 19.5    | 5.54  | 45.75   | 5.44  |
| scan    | 0.12  | 8.00  | 280.25  | 5.94  | 23.33   | 5.76  | 81.75   | 5.66  |
| Avg     |       | 10.02 | 252.78  | 5.52  | 13.65   | 5.86  | 34.54   | 5.56  |

Time is to create the structure, normalized to time for DFS  $_{\mathrm{Paee}\,57}^{\mathrm{DFS}}$ 

# **Conclusions**

O(n)-bit representation of separable graphs with O(1)-time queries

Space efficient and fast in practice for a wide variety of graphs.

15-853 Page 59

# Performance: Overall

|         | Array |       | List |       | bu-cf/semi |       |
|---------|-------|-------|------|-------|------------|-------|
| Graph   | time  | space | time | space | time       | space |
| auto    | 0.24  | 34.2  | 0.61 | 66.2  | 0.51       | 7.17  |
| feocean | 0.04  | 37.6  | 0.08 | 69.6  | 0.09       | 11.75 |
| m14b    | 0.11  | 34.1  | 0.29 | 66.1  | 0.24       | 6.70  |
| ibm17   | 0.15  | 33.3  | 0.40 | 65.3  | 0.34       | 7.72  |
| ibm18   | 0.14  | 33.5  | 0.38 | 65.5  | 0.32       | 7.33  |
| CA      | 0.34  | 43.4  | 0.56 | 75.4  | 0.58       | 11.66 |
| PA      | 0.19  | 43.3  | 0.31 | 75.3  | 0.32       | 11.68 |
| googleI | 0.24  | 37.7  | 0.49 | 69.7  | 0.45       | 7.86  |
| googleO | 0.24  | 37.7  | 0.50 | 69.7  | 0.51       | 9.90  |
| lucent  | 0.02  | 42.0  | 0.04 | 74.0  | 0.05       | 11.87 |
| scan    | 0.04  | 43.4  | 0.06 | 75.4  | 0.08       | 12.85 |

time is for one DFS

ge 58

# Compression Summary

Compression is all about probabilities



We want the model to skew the probabilities as much as possible (*i.e.*, decrease the **entropy**)

# Compression Summary

How do we figure out the probabilities

- Transformations that skew them
  - · Guess value and code difference
  - · Move to front for temporal locality
  - · Run-length
  - · Linear transforms (Cosine, Wavelet)
  - Renumber (graph compression)
- Conditional probabilities
  - Neighboring context

In practice one almost always uses a combination of techniques

15-853