15-853: Algorithms in the Real World

Computational Biology - I
- Exact string matching
- Suffix Trees
- Other apps

Exact String Matching

- Given a text T and pattern P
- "Quickly" find an occurrence (or all occurrences) of P in T

- A Naive solution:
 Compare P with T[i...i+n] for all i --- O(nm) time

- How about O(n+m) time?

Knuth-Morris-Pratt algorithm

- An O(n) preprocessing and O(m) time solution
- Want to search sequentially through T spending O(1) time on every character

T x y a b c x a b c x a b c d e f e
P a b c x a b c d e

Knuth-Morris-Pratt algorithm

- An O(n) preprocessing and O(m) time solution
- Want to search sequentially through T spending O(1) time on every character

T x y a b c x a b c x a b c d e f e
P a b c x a b c d e

1 2
Knuth-Morris-Pratt algorithm

- An $O(n)$ preprocessing and $O(m)$ time solution
- Want to search sequentially through T spending $O(1)$ time on every character

$T = \text{x y a b c x a b c x a b c d e f e}$
$P = \text{a b c x a b c d e}$

1 2 3 4 5 6 7 8 9 10

The match fails. Where should we restart?
Ideally restart from the 4th position of the pattern

Preprocessing the pattern

- At each position store the index of the position where we can resume the matching

 $i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$

 $P(i) \quad a \quad b \quad c \quad x \quad a \quad b \quad c \quad d \quad e$

 $l(i) \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 2 \quad 3 \quad 4 \quad 1$

- $l(i)$: 1 plus the length of longest suffix of $P[2..i-1]$ that matches a prefix of P.

 $l(1)$ is defined to be 0

 Thus $l(6) = 2$ (a = a) and $l(7) = 3$ (ab = ab)

- Can compute these values in linear time by going through the characters sequentially.

Knuth-Morris-Pratt algorithm

- $O(n+m)$ algorithm
 - $O(n)$ preprocessing + $O(m)$ matching
 - returns all occurrences

- What if we want to search for many patterns in the same text?
- $O(n+m)$ time per pattern $\Rightarrow O(km)$ time

- Can we do it faster? In $O(m+kn)$ time?

Suffix Trees

- Preprocess the text in $O(m)$ time and search in $O(n)$ time

- Idea:
 - Construct a tree containing all suffixes of text along the paths from the root to the leaves
 - For search, just follow the appropriate path
Suffix Trees

A suffix tree for the string $x a b x a c$

Search for the string $a b x$

Constructing Suffix trees

- Naive $O(m^2)$ algo
- For every i, add the suffix $S[i..m]$ to the current tree
Ukkonen’s linear-time algorithm

- We will start with an O(m^2) algorithm and then give a series of improvements
- In stage i, we construct a suffix tree T_i for S[1..i]
- Incrementing T_i to T_{i+1} naively takes O(i^2) time because we insert each of the i suffixes
- Thus a total of O(m^3) time

Going from T_i to T_{i+1}

- In the j^{th} substage of stage i+1, we insert S[j..i+1] into T_i. Let S[j..i] = β.

- Three cases
 - Rule 1: The path β ends on a leaf ⇒ add S[i+1] to the label of the last edge
 - Rule 2: The path β continues with characters other than S[i+1] ⇒ create a new leaf node and split the path labeled β
 - Rule 3: A path labeled β S[i+1] already exists ⇒ do nothing.

Idea #1: Suffix Links

- In each substage, we first search for some string in the tree and then insert a new node/edge/label
- Can we speed up looking for strings in the tree?

- In any substage, we look for a suffix of the strings searched in previous substages
- Idea: Put a pointer from an internal node labeled xα to the node labeled α
- Such a link is called a “Suffix Link”
Suffix Links - Bounding the time

- Steps in each substage
 - Go up 1 link to the nearest internal node
 - Follow a suffix link to the suffix node
 - Follow the path for the remaining string
- First two steps together make up $O(m)$ in each stage
- The third step follows only as many links as the length of the string $S[1..i]$
- Thus the total time per stage is $O(m)$

Maintaining Suffix Links

- Whenever a node labeled $xα$ is created, in the following substage a node labeled $α$ is created. Why?
- When a new node is created, add a suffix link from it to the root, and if required, add a suffix link from its predecessor to it.

Going from $O(m^2)$ to $O(m)$

- Can we even hope to do better than $O(m^2)$?
- Size of the tree itself can be $O(m^2)$
- But notice that there are only 2m edges! - Why?
- Idea: represent labels of edges as intervals
- Can easily modify the entire process to work on intervals

Idea #2 : Getting rid of Rule 3

- Recall Rule 3: A path labeled $S[j..i+1]$ already exists $⇒$ do nothing.
- If $S[j..i+1]$ already exists, then $S[j+1..i+1]$ exists too and we will again apply Rule 3 in the next substage
- Whenever we encounter Rule 3, this stage is over - skip to the next stage.
Idea #3: Fast-forwarding Rules 1 & 2

- Rule 1 applies whenever a path ends in a leaf
- Note that a leaf node always stays a leaf node - the only change is to append the new character to its edge using Rule 1
- An application of Rule 2 in substage j creates a new leaf node
 This node is then accessed using Rule 1 in substage j in all the following stages

Loop Structure

Rule 2 gets applied once per j
Rule 3 gets applied once per i

Another Way to Think About It

Insert finger
Increment when $S[j..i]$ not in tree (rule 2)
1) Insert $S[j..n]$ into tree by branching at $S[j..i-1]
2) Create suffix pointer to new node at $S[j..i-1]
 if there is one
3) Use parent suffix pointer to move finger to $j+1

Invariants:
1. j is never after i
2. $S[j..i-1]$ is always in the tree
An example

Leaf edge labels are updated by using a variable to denote the end of the interval

Complexity Analysis

- Rule 3 is used only once in every stage
- For every j, Rule 1 & 2 are applied only once in the jth substage of all the stages.
- Each application of a rule takes $O(1)$ steps
- Other overheads are $O(1)$ per stage
- Total time is $O(m)$

Extending to multiple lists

- Suppose we want to match a pattern with a dictionary of k strings
- Concatenate all the strings (interspersed with special characters) and construct a common suffix tree
- Time taken = $O(km)$
- Unnecessarily complicated tree; needs special characters

Multiple lists - Better algorithm

- First construct a suffix tree on the first string, then insert suffixes of the second string and so on
- Each leaf node should store values corresponding to each string
- $O(km)$ as before
Longest Common Substring

- Find the longest string that is a substring of both S_1 and S_2
- Construct a common suffix tree for both
- Any node that has leaf nodes labeled by S_1 and S_2 in the subtree rooted at it gives a common substring
- The “deepest” such node is the required substring
- Can be found in linear time by a tree traversal.

Common substrings of M strings

- Given M strings of total length n, find for every k, the length l_k of the longest string that is a substring of at least k of the strings
- Construct a common suffix tree
- For every internal node, find the number of distinctly labeled leaves in the subtree rooted at the node
- Report l_k by a single tree traversal
- $O(Mn)$ time – not linear!

Lempel-Ziv compression

- Recall that at each stage, we output a pair (p_i, l_i) where $S[p_i..p_i+l_i] = S[i..i+l_i]$
- Find all pairs (p_i, l_i) in linear time
- Construct a suffix tree for S
- Label each internal node with the minimum of labels of all leaves below it – this is the first place in S where it occurs. Call this label c_r
- For every i, search for the string $S[i..m]$ stopping just before $c_r \geq i$. This gives us l_i and p_i.