Indexing and Searching Outline

Introduction: model, query types

Inverted File Indices: Compression, Lexicon, Merging

Vector Models:

Latent Semantic Indexing:

Link Analysis: PageRank (Google), HITS

Duplicate Removal:

Basic Model

```
Document Collection
\[\rightarrow\] Index\[\rightarrow\] Query\[\rightarrow\] Document List
```

Applications:

- Web, mail and dictionary searches
- Law and patent searches
- Information filtering (e.g., NYT articles)

Goal: Speed, Space, Accuracy, Dynamic Updates

15-853: Algorithms in the Real World

Indexing and Searching I (how google and the likes work)
How big is an Index?

Sep 2003, self proclaimed sizes (gg = google, atw = alltheweb, ink = inktomi, tma = teoma)
Source: Search Engine Watch

Sizes over time

Precision and Recall

Precision: number retrieved that are relevant
 total number retrieved

Recall: number relevant that are retrieved
 total number relevant

Typically a tradeoff between the two.

Precision and Recall

Does the black or the blue circle have higher precision?
Main Approaches

Full Text Searching
- e.g. grep, agrep (used by many mailers)

Inverted File Indices
- good for short queries
- used by most search engines

Signature Files
- good for longer queries with many terms

Vector Space Models
- good for better accuracy
- used in clustering, SVD, ...

Queries

Types of Queries on Multiple “terms”
- boolean (and, or, not, andnot)
- proximity (adj, within <n>)
- keyword sets
- in relation to other documents

And within each term
- prefix matches
- wildcards
- edit distance bounds

Technique used Across Methods

Case folding
London -> london

Stemming
compress = compression = compressed
(several off-the-shelf English Language stemmers are freely available)

Stop words
 to, the, it, be, or, ...
 how about “to be or not to be”

Thesaurus
 fast -> rapid

Other Methods

Document Ranking:
Returning an ordered ranking of the results
- A priori ranking of documents (e.g. Google)
- Ranking based on “closeness” to query
- Ranking based on “relevance feedback”

Clustering and “Dimensionality Reduction”
- Return results grouped into clusters
- Return results even if query terms does not appear but are clustered with documents that do

Document Preprocessing
- Removing near duplicates
- Detecting spam
Indexing and Searching Outline

Introduction: model, query types

Inverted File Indices:
- Index compression
- The lexicon
- Merging terms (unions and intersections)

Vector Models:
Latent Semantic Indexing:
Link Analysis: PageRank (Google), HITS
Duplicate Removal:

Documents as Bipartite Graph

Called an “Inverted File” index
Can be stored using adjacency lists, also called
- posting lists (or files)
- inverted file entry
Example size of TREC database
(Text REtrieval Conference)
- 538K terms
- 742K documents
- 333,856K edges
For the web, multiply by 10K

Documents as Bipartite Graph

Lexicon

Aardvark

... terms

Documents

Implementation Issues:
1. Space for posting lists
 - these take almost all the space
2. Access to lexicon
 - btrees, tries, hashing
 - prefix and wildcard queries
3. Merging posting list
 - multiple term queries

1. Space for Posting Lists

Posting lists can be as large as the document data
- saving space and the time to access the space is critical for performance
We can compress the lists, but, we need to uncompress on the fly.

Difference encoding:
- Lets say the term elephant appears in documents:
 [3, 5, 20, 21, 23, 76, 77, 78]
 then the difference code is
 [3, 2, 15, 1, 2, 53, 1, 1]
Some Codes

Gamma code:
if most significant bit of n is in location k, then
gamma(n) = 0\^k n[k..0]
2 log(n) - 1 bits

Delta code:
gamma(k)[n[k..0]
2 log(log(n)) + log(n) - 1 bits

Frequency coded:
base on actual probabilities of each distance

Global vs. Local Probabilities

Global:
- Count # of occurrence of each distance
- Use Huffman or arithmetic code

Local:
generate counts for each list
elephant: [3, 2, 1, 2, 53, 1, 1]
Problem: counts take too much space
Solution: batching
group into buckets by \(\lfloor \log(\text{length}) \rfloor\)

Performance

<table>
<thead>
<tr>
<th>Code</th>
<th>bits/edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>20.00</td>
</tr>
<tr>
<td>Binary</td>
<td>6.43</td>
</tr>
<tr>
<td>Gamma</td>
<td>6.19</td>
</tr>
<tr>
<td>Delta</td>
<td>5.83</td>
</tr>
<tr>
<td>Huffman</td>
<td>5.28</td>
</tr>
<tr>
<td>Local</td>
<td>5.27</td>
</tr>
</tbody>
</table>

Skewed Bernoulli

Batched Huffman

Bits per edge based on the TREC document collection
Total size = 333M * .66 bytes = 222Mbytes

2. Accessing the Lexicon

We all know how to store a dictionary, BUT...
- it is best if lexicon fits in memory---can we avoid storing all characters of all words
- what about prefix or wildcard queries?

Some possible data structures
- Front Coding
- Tries
- Perfect Hashing
- B-trees
Front Coding

<table>
<thead>
<tr>
<th>Word</th>
<th>Front Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.jezebel</td>
<td>0.7.jezebel</td>
</tr>
<tr>
<td>5.jezer</td>
<td>4.1.r</td>
</tr>
<tr>
<td>7.jezerit</td>
<td>5.2.it</td>
</tr>
<tr>
<td>6.jeziyah</td>
<td>3.3.iyah</td>
</tr>
<tr>
<td>6.jeziel</td>
<td>4.2.el</td>
</tr>
<tr>
<td>7.jeziyah</td>
<td>3.4.iah</td>
</tr>
</tbody>
</table>

For large lexicons can save 75% of space
But what about random access?

Prefix and Wildcard Queries

Prefix queries
- Handled by all access methods except hashing

Wildcard queries
- n-gram
- rotated lexicon

n-gram

Consider every block of n characters in a term:
e.g. 2-gram of jezebel -> j, je, ez, ze, eb, el, l

Break wildcard query into an n-grams and search.
e.g. j*el would
1. search for j, el, l as if searching for documents
2. find all potential terms
3. remove matches for which the order is incorrect

Rotated Lexicon

Consider every rotation of a term:
e.g. jezebel -> $jezebel, l$jezebe, el$jezeb, bel$jeze

Now store lexicon of all rotations
Given a query find longest contiguous block (with rotation) and search for it:
e.g. j*el -> search for elj in lexicon
Note that each lexicon entry corresponds to a single term
e.g. ebeljez can only mean jezebel
3. Merging Posting Lists

Let's say queries are expressions over:
- and, or, andnot

View the list of documents for a term as a set:
Then
- \(e_1 \) and \(e_2 \rightarrow S_1 \) intersect \(S_2 \)
- \(e_1 \) or \(e_2 \rightarrow S_1 \) union \(S_2 \)
- \(e_1 \) andnot \(e_2 \rightarrow S_1 \) diff \(S_2 \)

Some notes:
- the sets are ordered in the "posting lists"
- \(S_1 \) and \(S_2 \) can differ in size substantially
- might be good to keep intermediate results
- persistence is important

Union, Intersection, and Merging

Given two sets of length \(n \) and \(m \) how long does it take for intersection, union and set difference?
Assume elements are taken from a total order (\(\cdot \))
Very similar to merging two sets \(A \) and \(B \), how long does this take?

What is a lower bound?

Union, Intersection, and Merging

Lower Bound:
- There are \(n \) elements of \(A \) and \(n + m \) positions in the output they could belong
- Number of possible interleavings: \(\binom{n+m}{n} \)
- Assuming comparison based model, the decision tree has that many leaves
- Max depth is at least \(\log \text{of number of leaves} \)
- Assuming \(m < n \):
 \[\log \left(\frac{n+m}{n} \right) \in \Omega \left(m \log \left(\frac{n+m}{m} \right) \right) \]
Split and Join

Split(S, v):
Split S into two sets
S_1 = \{ s \in S \mid s < v \} and S_2 = \{ s \in S \mid s > v \}.
Also return a flag which is true if v \in S.
- Split((7, 9, 15, 18, 22), 18) \rightarrow (7, 9, 15, 22), True

Join(S_1, S_2):
Assuming \forall k_1, k_2 \in S_1, k_2 \in S_2 : k_2 < k
returns S_1 \cup S_2,
- Join((7, 9, 11), (14, 22)) \rightarrow \{7, 9, 11, 14, 22\}

Time for Split and Join

Split(S, v) \rightarrow (S_1, S_2), flag
Join(S_1, S_2) \rightarrow S

Naively:
- T = O(|S|)

Less Naively:
- T = \Theta (|S|}

What we want:
- T = O(\log(\min(|S_1|, |S_2|))) -- can be shown
- T = O(\log |S|) -- will actually suffice

Will also use

isEmpty(S) \rightarrow boolean
- True if the set S is empty

first(S) \rightarrow e
- returns the least element of S
- first((2, 6, 9, 11, 13)) \rightarrow 2

{e} \rightarrow S
- creates a singleton set from an element

We assume they can both run in \(O(1)\) time.

An ADT with 5 operations!

Union with Split and Join

Union(S_1, S_2) =
if isEmpty(S_1) then return S_2
else
(S_2', S_2, fl) = Split(S_2, first(S_1))
return Join(S_2', Union(S_2, S_1))

A
\[\begin{array}{l}
 a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5 \\
\end{array} \]

B
\[\begin{array}{l}
 b_1 \quad b_2 \quad b_3 \quad b_4 \quad b_5 \\
\end{array} \]

Out
\[\begin{array}{l}
 b_1 \quad a_1 \quad b_2 \quad a_2 \quad b_3 \quad a_3 \quad b_4 \quad a_4 \quad \ldots \\
\end{array} \]
Runtime of Union

<table>
<thead>
<tr>
<th>Out</th>
<th>o1</th>
<th>o2</th>
<th>o3</th>
<th>o4</th>
<th>o5</th>
<th>o6</th>
<th>o7</th>
<th>o8</th>
</tr>
</thead>
</table>

\[T_{\text{union}} = O(\Sigma_i \log |o_i|) \]

Since the logarithm function is concave, this is maximized when blocks are as close as possible to equal size, therefore

\[T_{\text{union}} = O(\Sigma_i \log \lfloor n/m + 1 \rfloor) = O(m \log ((n+m)/m)) \]

Intersection with Split and Join

\[\text{Intersect}(S_1, S_2) = \]

if isempty(S₁) then return Ø

else

\((S_{2\text{,}} S_{2\text{,}} \text{flag}) = \text{Split}(S_2, \text{first}(S_1))\)

if flag then

\(\text{return Join(}(\text{first}(S_1)), \text{Intersect}(S_{2\text{,}}, S_{1\text{,}}))\)

else

\(\text{return Intersect}(S_{2\text{,}}, S_{1\text{,}})\)

Efficient Split and Join

Recall that we want: \(T = O(\log |S,|)\)

How do we implement this efficiently?

Treaps

Every key is given a "random" priority.

- keys are stored in-order
- priorities are stored in heap-order

\(e.g. (\text{key}, \text{priority}): (1, 23), (4, 40), (5, 11), (9, 35), (12, 30)\)

If the priorities are unique, the tree is unique.
Left Spinal Treap

Start

Time to split = length of path from Start to split location l.
We will show that this is $O(\log L)$ in the expected case, where L is the number of keys between Start and l (inclusive). 10 in the example.
Time to Join is the same.

Analysis

$P_i =$ length of path from Start to i

$A_{ij} = \begin{cases} 1 & \text{if } x_i \text{ ancestor of } x_j \\ 0 & \text{otherwise} \end{cases}$

$p_i = Ex[P_i]$

$C_{iln} = \begin{cases} 1 & \text{if } x_i \text{ common ancestor of } x_l \text{ and } x_n \\ 0 & \text{otherwise} \end{cases}$

$c_{iln} = Ex[C_{iln}]$

$P_i = \sum_{j=1}^{i} A_{ij} + \sum_{j=1}^{n} (A_{ij} - C_{iln})$

Analysis Continued

$Ex[P_i] = p_i = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} (a_{ii} - c_{iln})$

Lemma: $a_{ij} = \frac{1}{|i-j|+1}$

Proof:
1. i is an ancestor of j iff i has a greater priority than all elements between i and j, inclusive.
2. there are $|i-j|+1$ such elements each with equal probability of having the highest priority.

Analysis Continued

$\sum_{i=1}^{l} a_{li} = \frac{1}{\sum_{i=1}^{l} |i-1|+1} = \frac{1}{\sum_{i=1}^{l} i} < 1 + \ln l$ (harmonic number H_l)

Can similarly show that:

$\sum_{i=1}^{l} (a_{il} - c_{il}) = O(\log l)$

Therefore the expected path length and runtime for split and join is $O(\log l)$.
Similar technique can be used for other properties of Treaps.
And back to "Posting Lists"
We showed how to take Unions and Intersections, but Treaps are not very space efficient.

Idea: if priorities are in the range (0..1) then any node with priority < 1 - \(\alpha \) is stored compressed. \(\alpha \) represents fraction of uncompressed nodes.

![Diagram]

Case Study: AltaVista
How AltaVista implements indexing and searching, or at least how they did in 1998.

Based on a talk by A. Broder and M. Henzinger from AltaVista. Henzinger is now at Google, Broder is at IBM.

- The index (posting lists)
- The lexicon
- Query merging (or, and, andnot queries)

The size of their whole index is about 30% the size of the original documents it encodes.

AltaVista: the index
All documents are concatenated together into one sequence of terms (stop words removed).
- This allows proximity queries
- Other companies do not do this, but do proximity tests in a postprocessing phase
- Tokens separate documents

Posting lists contain pointers to individual terms in the single "concatenated" document.
- Difference encoded
- Use Front Coding for the Lexicon

AltaVista: the lexicon
The Lexicon is front coded.
- Allows prefix queries, but requires prefix to be at least 3 characters (otherwise too many hits)
AltaVista: query merging

Support expressions on terms involving:
- AND, OR, ANDNOT and NEAR
Implement posting list with an abstract data type called an "Index Stream Reader" (ISR).
Supports the following operations:
- loc() : current location in ISR
- next() : advance to the next location
- seek(k) : advance to first location past k

AltaVista: query merging (cont.)

Queries are decomposed into the following operations:
- Create : term → ISR ISR for the term
- Or : ISR * ISR → ISR Union
- And : ISR * ISR → ISR Intersection
- AndNot : ISR * ISR → ISR Set difference
- Near : ISR * ISR → ISR Intersection, almost
Note that all can be implemented with our Treap Data structure.
I believe (from private conversations) that they use a two level hierarchy that approximates the advantages of balanced trees (e.g. treaps).