15-853: Algorithms in the Real World

Computational Biology IV
- Multiple Sequence Alignment

Example Output

Output from typical multiple alignment software DNAMAN (using ClustalW)

Scoring Multiple Alignments

1. Distance from consensus S_2: $D = \sum_{S_i \in S} D(S_i, S_2)$

2. Pairwise distances: $D = \sum_{S_i \in S} \sum_{S_j \neq S_i} D(S_i, S_j)$

3. Evolutionary Tree Alignment

$D = D(S_1, S_2) + D(S_3, S_4) + D(S_{12}, S_3) + D(S_{13}, S_{45})$
Approaches

Dynamic programming: optimal, but takes time that is exponential in \(p \)

Center Star Method: approximation

Clustering Methods: also called iterative pairwise alignment. Typically an approximation. Many variants, many software packages

Using Dynamic Programming

For \(p \) sequences of length \(n \) we can fill in a \(p \)-dimensional array in \(n^p \) time and space.

For example for \(p = 3 \):

\[
D_{ijk} = \min \begin{cases}
D_{i-1,j-1,k-1} + d(a_i, b_j, c_k) \\
D_{i-1,j-1,k} + d(a_i, b_j, c_k) \\
D_{i,j,k-1} + d(a_i, b_j, c_k) \\
\ldots
\end{cases}
\]

7 cases

where \(d(a, b, c) = d(a, b) + d(b, c) + d(a, c) \)

assuming the pairwise distance metric.

Takes time exponential in \(p \). Perhaps OK for \(p = 3 \)

Example

As in the case of pairwise alignment we can view the array as a graph and find shortest paths.

Used in a program called MSA.

Can align 6 strings consisting of 200 bp each in a "practical" amount of time.

Optimization

As in the case of pairwise alignment we can view the array as a graph and find shortest paths.

Used in a program called MSA.

Can align 6 strings consisting of 200 bp each in a "practical" amount of time.
Center Star Method

1. Find S_2 so minimizing $\sum_{S_i \in S} D(S_i, S_2)$
2. Add remaining sequences S/S_2 one by one so alignment of each is optimal wrt S_2

Add spaces if needed

Time: $O(n^2)$

Using Clustering

1. Compute $D(S_i, S_j)$ for all pairs
2. Bottom up cluster
 - I. All sequences start as their own cluster
 - II. Repeat
 - a) find the two “closest” clusters and join them into one
 - b) Find best alignment of the two clusters being joined

Distances between Clusters

Could use difference between consensus.

A popular technique is called the “Unweighted Pair-Group Method using arithmetic Averages” (UPGMA). It takes the average of all distances among the two clusters.

Implemented in Clustal and Pileup

Summary of Matching

Types of matching:
- Global: align two sequences A and B
- Local: align A with any part of B
- Multiple: align k sequences (NP-complete)

Cost models
- LCS and MED
- Scoring matrices: Blosum, PAM
- Gap cost: affine, general

Methods
- Dynamic programming: many optimizations
- “Fingerprinting”: hashing of small seqs. (approx.)
- Clustering: for multiple alignment (approx.)