15-853: Algorithms in the Real World

Computational Biology IV
- Multiple Sequence Alignment

15-853 Page 1

Multiple Alignment

<u>Goal:</u> match the "maximum" number of aligned pairs of symbols.

Applications:

- Assembling multiple noisy reads of fragments of sequences
- Finding a canonical among members of a family and studying how the members differ

The problem is NP-hard

Page 2

Example Output

Output from typical multiple alignment software DNAMAN (using <u>ClustalW</u>)

853 Page 3

Scoring Multiple Alignments

- 1. Distance from consensus S_c : $D = \sum_{S_i \in S} D(S_i, S_c)$
- 2. Pairwise distances: $D = \sum_{S_i \in S} \sum_{S_i \in S/S_i} D(S_i, S_j)$
- 3. Evolutionary Tree Alignment

$$D = D(S_1, S_2) + D(S_4, S_5) + D(S_{12}, S_3) + D(S_{123}, S_{45})$$

5-853 Page

Approaches

<u>Dynamic programming</u>: optimal, but takes time that is exponential in *p*

Center Star Method: approximation

<u>Clustering Methods</u>: also called iterative pairwise

alignment. Typically an approximation.

Many variants, many software packages

15-853 Page 5

Using Dynamic Programming

For p sequences of length n we can fill in a p-dimensional array in n^p time and space. For example for p = 3:

$$D_{ijk} = \min \begin{cases} D_{i-1,j-1,k-1} + d(a_i,b_j,c_k) \\ D_{i-1,j-1,k} + d(a_i,b_j,_) \\ D_{i-1,j,k} + d(a_i_,_) \\ \dots \end{cases}$$
 7 cases

where d(a,b,c) = d(a,b) + d(b,c) + d(a,c)assuming the pairwise distance metric. Takes time exponential in p. Perhaps OK for p = 3

15-853 Page 6

Optimization

As in the case of pairwise alignment we can view the array as a graph and find shortest paths.

Used in a program called MSA.

Can align 6 strings consisting of 200 bp each in a "practical" amount of time.

15-853 Page 8

Center Star Method

- 1. Find S_t 2 S minimizing $\sum_{S_i \in S/S_t} D(S_i, S_t)$
- 2. Add remaining sequences S/S_{t} one by one so alignment of each is optimal wrt S_{t} . Add spaces if needed

 $\underline{\mathsf{Time}} \colon O(\mathsf{p}^2\mathsf{n}^2)$

Page 9

Using Clustering

- 1. Compute $D(S_i, S_i)$ for all pairs
- 2. Bottom up cluster
 - I. All sequences start as their own cluster
 - II. Repeat
 - a) find the two "closest" clusters and join them into one
 - b) Find best alignment of the two clusters being joined

S₁ S₂ S₅

Page 10

Distances between Clusters

15-853

Could use difference between consensus.

A popular technique is called the "Unweighted Pair-Group Method using arithmetic Averages" (UPGMA).

It takes the average of all distances among the two clusters.

Implemented in Clustal and Pileup

15-853 Page 11

Summary of Matching

Types of matching:

- Global: align two sequences A and B
- Local: align A with any part of B
- Multiple: align k sequences (NP-complete)

Cost models

- LCS and MED
- Scoring matrices: Blosum, PAM
- Gap cost: affine, general

Methods

- Dynamic programming: many optimizations
- "Fingerprinting": hashing of small seqs. (approx.)
- Clustering: for multiple alignment (approx.)

15-853

Page 12