15-853: Algorithms in the Virtual World

Indexing and Searching II

Vector Space Model
Model each document as a vector in \(n \) dimensional space: \((1, 0, 0, 0, \ldots, 0)\)

- Aardvark
- Ant
- Zebra

Query can also be modeled as a vector.

Uses:
- Ranked keyword search
- Relevance feedback
- Semantic indexing
- Clustering

Indexing and Searching Outline

Introduction: model, query types

Inverted Indices: Compression, Lexicon, Merging

Vector Models:
- Selecting weights
- Cosine measure
- Relevance feedback

Latent Semantic Indexing:
Link Analysis: PageRank (Google), HITS
Duplicate Removal:

Selecting Weights

\[f_{d,t} = \text{number of times } t \text{ appears in document } d \]

\[w_{d,t} = \text{weight of } t \text{ in } d \]

Accounting for frequency within a document

\[w_{d,t} = f_{d,t} \quad \text{frequency} \]

\[w_{d,t} = \log(1 + f_{d,t}) \quad \text{log frequency} \]

Accounting for information content of a term

\[w_t = \log(1/p) = \log(N/f_t) \]

giving: \[w_{d,t} = \log(N/f_t)\log(1 + f_{d,t}) \]
Similarity between vectors

Dot product: \(w_q \cdot w_d \)

Inverse Euclidean distance: \(1/||w_q - w_d|| \)

Problem: they weight longer documents more heavily.

Cosine metric:

\[
\cos \theta = \frac{w_q \cdot w_d}{||w_q|| \cdot ||w_d||}
\]

Based on \(X \cdot Y = ||X|| ||Y|| \cos \theta \)

Frequencies and Inverted Lists

Each inverted list:

\[
\{ (t; w_1; f_{d_1, t}), (d_{1}, f_{d_1, t}), \ldots, (d_{m}, f_{d_m, t}) \}
\]

(aardvark: (2,3),(5,4))

Frequency counts can typically be compressed at least as well as distances. (2 bits/pointer in TREC).

Queries (cosine measure)

Algorithm:

1. **Query** (Q)
 - \(A = \emptyset \) (Accumulators for documents)
 - For each term \(t \in Q \)
 - \(t; w_1; P_t \) = Search lexicon for \(t \)
 - \(P_t = \text{uncompress}(P_t) \)
 - For each \((d; f_{d, t}) \) in \(P_t \)
 - if \(a_d \in A \)
 - \(a_d = a_d + w_1 \cdot \log(f_{d, t}) \)
 - else
 - \(a_d = w_1 \cdot \log(f_{d, t}) \)
 - \(A = A + (a_d) \)
 - For each \(a_d \in A \)
 - \(a_d \) = \(a_d/|d| \)
 - Select \(k \) documents from \(A \) with largest \(a_d \)

Relevance Feedback

Consider a sequence of queries \(Q_1, Q_2, \ldots, Q_m \) in which \(R, I \) are the relevant and irrelevant documents returned by query (typically marked by the user)

We can generate each query from previous queries:

\[
Q_{i+1} = \pi Q_0 + \alpha Q_i + \alpha \sum_{d \in R_i} D_d + \beta \sum_{d \in I_i} D_d
\]

What is the efficiency problem with these queries?
Clustering

Goals:
1. Speed up searches for complicated queries
2. Find documents which are similar

There are many techniques for clustering, as well as many other applications of clustering.

Indexing and Searching Outline

Introduction: model, query types

Inverted Indices: Compression, Lexicon, Merging

Vector Models: Weights, cosine distance

Latent Semantic Indexing:
- Singular Valued Decompositions
- Applications to indexing and searching

Link Analysis: PageRank (Google), HITS

Duplicate Removal: