Indexing and Searching Outline

Introduction: model, query types
Inverted Indices: Compression, Lexicon, Merging
Vector Models:
Latent Semantic Indexing:
Link Analysis: PageRank (Google), HITS
Duplicate Removal:

Basic Model

"Document Collection"

Index

Query

Document List

Applications:
- Web, mail and dictionary searches
- Law and patent searches
- Information filtering (e.g., NYT articles)
Goal: Speed, Space, Accuracy, Dynamic Updates

15-853: Algorithms in the Real World

Indexing and Searching I (how google and the likes work)
How big is an Index?

Dec 2001, self proclaimed sizes (gg = google)
Source: Search Engine Watch

Precision and Recall

Precision: number retrieved that are relevant
total number retrieved

Recall: number relevant that are retrieved
total number relevant

Typically a tradeoff between the two.

Precision and Recall

Main Approaches

Full Text Searching
- e.g. grep, agrep (used by many mailers)

Inverted Indices
- good for short queries
- used by most search engines

Signature Files
- good for longer queries with many terms

Vector Space Models
- good for better accuracy
- used in clustering, SVD, ...
Queries

Types of Queries on Multiple "terms"
- boolean (and, or, not, andnot)
- proximity (adj. within n)
- keyword sets
- in relation to other documents

And within each term
- prefix matches
- wildcards
- edit distance bounds

Technique used Across Methods

Case folding
London -> london

Stemming
compress = compression = compressed
(several off-the-shelf English Language stemmers are freely available)

Stop words
- to, the, it, be, or, ...
how about "to be or not to be"

Thesaurus
fast -> rapid

Other Methods

Document Ranking:
Returning an ordered ranking of the results
- A priori ranking of documents (e.g. Google)
- Ranking based on "closeness" to query
- Ranking based on "relevance feedback"

Clustering and "Dimensionality Reduction"
- Return results grouped into clusters
- Return results even if query terms does not appear but are clustered with documents that do

Document Preprocessing
- Removing near duplicates
- Detecting spam

Indexing and Searching Outline

Introduction: model, query types

Inverted Indices:
- Index compression
- The lexicon
- Merging terms (unions and intersections)

Vector Models:
Latent Semantic Indexing:
Link Analysis: PageRank (Google), HITS
Duplicate Removal:
Documents as Bipartite Graph

Called an "Inverted File" index
Can be stored using adjacency lists, also called
- posting lists (or files)
- inverted file entry
Example size of TREC
- 538K terms
- 742K documents
- 333,856K edges
For the web, multiply by 5-10K

Implementation Issues:
1. Space for posting lists
 these take almost all the space
2. Access to lexicon
 - btrees, tries, hashing
 - prefix and wildcard queries
3. Merging posting list
 - multiple term queries

1. Space for Posting Lists
Posting lists can be as large as the document data
- saving space and the time to access the space is critical for performance
We can compress the lists,
but, we need to uncompress on the fly.

Difference encoding:
Let's say the term elephant appears in documents: [3, 5, 20, 21, 23, 76, 77, 78]
then the difference code is [3, 2, 15, 1, 2, 53, 1, 1]

Some Codes

Gamma code:
if most significant bit of n is in location k, then
\[\gamma(k) = \begin{cases} 0^{k-1} \cdot n[k..0] \\ 2 \log(n) - 1 \text{ bits} \end{cases} \]

Delta code:
\[\delta(k) = \begin{cases} \gamma(k) \text{ or } n[k..0] \\ 2 \log(\log(n)) + \log(n) - 1 \text{ bits} \end{cases} \]

Frequency coding:
base on actual probabilities of each distance
Global vs. Local Probabilities

Global:
- Count # of occurrences of each distance
- Use Huffman or arithmetic code

Local:
- generate counts for each list
 - elephant: [3, 2, 1, 2, 53, 1, 1]
- Problem: counts take too much space
- Solution: batching
 - group into buckets by \(|\log(\text{length})|\)

Performance

<table>
<thead>
<tr>
<th></th>
<th>bits/edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>20.00</td>
</tr>
<tr>
<td>Binary</td>
<td>6.43</td>
</tr>
<tr>
<td>Gamma</td>
<td>6.19</td>
</tr>
<tr>
<td>Delta</td>
<td>5.83</td>
</tr>
<tr>
<td>Huffman</td>
<td>5.28</td>
</tr>
<tr>
<td>Local</td>
<td>5.27</td>
</tr>
<tr>
<td>Skewed Bernoulli</td>
<td>5.28</td>
</tr>
<tr>
<td>Batched Huffman</td>
<td>5.27</td>
</tr>
</tbody>
</table>

Bits per edge based on the TREC document collection
Total size = 333M * .66 bytes = 222Mbytes

2. Accessing the Lexicon

We all know how to store a dictionary, BUT...
- it is best if lexicon fits in memory---can we avoid storing all characters of all words
- what about prefix or wildcard queries?

Some possible data structures
- Front Coding
- Tries
- Perfect Hashing
- B-trees

Front Coding

<table>
<thead>
<tr>
<th>Word</th>
<th>front coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.jezel</td>
<td>0.7.,jezbel</td>
</tr>
<tr>
<td>5.jezer</td>
<td>4.1,er</td>
</tr>
<tr>
<td>7.jezer</td>
<td>5.2,er</td>
</tr>
<tr>
<td>6.jeziah</td>
<td>3.3.,iah</td>
</tr>
<tr>
<td>6.jeziel</td>
<td>4.2,el</td>
</tr>
<tr>
<td>7.jeziah</td>
<td>3.4.,iah</td>
</tr>
</tbody>
</table>

For large lexicons can save 75% of space
But what about random access?
Prefix and Wildcard Queries

Prefix queries
- Handled by all access methods except hashing

Wildcard queries
- n-gram
- rotated lexicon

n-gram
Consider every block of n characters in a term:
e.g. 2-gram of jezebel -> j, je, ez, ze, eb, el, l

Break wildcard query into an n-grams and search.
e.g. j*el would
1. search for j, el, l as
 if searching for documents
2. find all potential terms
3. remove matches for which
 the order is incorrect

Rotated Lexicon
Consider every rotation of a term:
e.g. jezebel ->
 $jezebel, l$jezebe, el$jezeb, bel$jeze
Now store lexicon of all rotations
Given a query find longest contiguous block (with rotation)
and search for it:
e.g. j*el -> search for el$j in lexicon
Note that each lexicon entry corresponds to a single term
 e.g. ebel$jjez can only mean jezebel

3. Merging Posting Lists
Lets say queries are expressions over:
 - and, or, andnot
View the list of documents for a term as a set:
Then
 e1 and e2 -> S1 intersect S2
 e1 or e2 -> S1 union S2
 e1 andnot e2 -> S1 diff S2
Some notes:
 - the sets ordered in the "posting lists"
 - S1 and S2 can differ in size substantially
 - might be good to keep intermediate results
 - persistence is important
Union, Intersection, and Merging

Given two sets of length \(n \) and \(m \) how long does it take for intersection, union and set difference?
Assume elements are taken from a total order (\(^*\))
Very similar to merging two sets \(A \) and \(B \), how long does this take?

What is a lower bound?

Union, Intersection, and Merging

Lower Bound:
- There are \(n \) elements of \(A \) and \(n + m \) positions in the output they could belong
- Number of possible interleavings: \(\binom{n + m}{n} \)
- Assuming comparison based model, the decision tree has that many leaves and depth \(\log \log \binom{n + m}{n} \)
- Assuming \(m < n \):
 \[\log \frac{n + m}{n} \in \Omega \left(m \log \frac{n + m}{m} \right) \]

Merging: Upper bounds

Brown and Tarjan show an \(O(m \log((n + m)/m)) \) upper bound using 2-3 trees with cross links and parent pointers. Very messy.
We will take different approach, and base on two operations: split and join

Split and Join

\(\text{Split}(S,v) \):
- Split \(S \) into two sets
 \(S_1 = \{ s \in S \mid s < v \} \) and \(S_2 = \{ s \in S \mid s > v \} \).
- Also return a flag which is true if \(v \in S \).
 - \(\text{Split}((7,9,15,18,22), 18) \to (7,9,15),(22), \text{True} \)

\(\text{Join}(S_1, S_2) \):
- Assuming \(\forall k, \in S_1, k, \text{ in } S_2 : k < k \)
- \(\text{Join}((7,9,11),(14,22)) \to (7,9,11,14,22) \)
Time for Split and Join

\[\text{Split}(S, v) \rightarrow (S_1, S_2, \text{flag}) \quad \text{Join}(S_1, S_2) \rightarrow S \]

Naively:
- \(T = O(|S|) \)

Less Naively:
- \(T = O(\log |S|) \)

What we want:
- \(T = O(\log(\min(|S_1|, |S_2|))) \) -- can be shown
- \(T = O(\log |S_1|) \) -- will actually suffice

Will also use

- \(\text{isEmpty}(S) \rightarrow \text{boolean} \)
 - True if the set \(S \) is empty
- \(\text{first}(S) \rightarrow e \)
 - returns the least element of \(S \)
 - \(\text{first}([2, 6, 9, 11, 13]) \rightarrow 2 \)
- \(e \rightarrow S \)
 - creates a singleton set from an element

We assume they can both run in \(O(1) \) time.

An ADT with 5 operations!

Union with Split and Join

\[
\text{Union}(S_1, S_2) =
\begin{cases}
 \text{if isEmpty}(S_1) \text{ then return } S_2 \\
 \text{else} \\
 (S_2, S_3, f1) = \text{Split}(S_2, \text{first}(S_1)) \\
 \text{return Join}(S_2, \text{Union}(S_2, S_1))
\end{cases}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>b1</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>a5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
<td>b5</td>
<td></td>
</tr>
</tbody>
</table>

Out

Out	b1	a1	a2	a3	b4	a4	a5	b5	

Runtime of Union

\[
T_{\text{union}} = O(\Sigma \log |l_1| + \Sigma \log |l_2|) \\
\text{Splits} \quad \text{Joins}
\]

Since the logarithm function is concave, this is maximized when blocks are as close as possible to equal size, therefore

\[
T_{\text{union}} = O(\Sigma_{i=1}^{r} \log \left(\frac{n}{m} + 1 \right)) \\
= O(m \log \left((n+m)/m \right))
\]
Intersection with Split and Join

\[\text{Intersect}(S_1, S_2) = \]
\[\text{if } \text{isempty}(S_i) \text{ then return } \emptyset \]
\[\text{else} \]
\[(S_{2'}, S_{2'}, \text{flag}) = \text{Split}(S_2, \text{first}(S_1)) \]
\[\text{if flag then} \]
\[\text{return } \text{Join}((\text{first}(S_1)), \text{Intersect}(S_{2'}, S_1)) \]
\[\text{else} \]
\[\text{return } \text{Intersect}(S_{2'}, S_1) \]

Efficient Split and Join

Recall that we want: \(T = O(\log |S|) \)

How do we implement this efficiently?

Treaps

Every key is given a "random" priority.
- keys are stored in-order
- priorities are stored in heap-order

\(\text{e.g. } (\text{key}, \text{priority}) : (1, 23), (4, 40), (5, 11), (9, 35), (12, 30) \)

If the priorities are unique, the tree is unique.

Left Spinal Treap

Time to split = length of path from Start to split location \(i \)

We will show that this is \(O(\log L) \) in the expected case, where \(L \) is the number of keys between \(\text{Start} \) and \(i \) (inclusive). 10 in the example.

Time to Join is the same
Analysis

\[P_i = \text{lengh of path from Start to } i \]
\[A_j = \begin{cases} 1 & \text{ancestor of } x_j \\ 0 & \text{otherwise} \end{cases} \]
\[a_{ij} = \text{Ex}[A_j] \]
\[C_{i \text{fun}} = \begin{cases} 1 & \text{common ancestor of } x_j \text{ and } x_n \\ 0 & \text{otherwise} \end{cases} \]
\[c_{i \text{fun}} = \text{Ex}[C_{i \text{fun}}] \]
\[P_i = \sum_{i=1}^{j} A_i + \sum_{i=1}^{n} (A_i - C_i) \]

Analysis Continued

\[\sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \frac{1}{|i-1|+1} = \sum_{i=1}^{n} \frac{1}{i} < 1 + \ln n \text{ (harmonic number } H_j) \]

Can similarly show that:

\[\sum_{i=1}^{n} (a_{ii} - c_{ii}) = O(\log n) \]

Therefore the expected path length and runtime for split and join is \(O(\log n) \).

Similar technique can be used for other properties of Treaps.

Analysis Continued

\[\text{Ex}[P_j] = \sum_{i=1}^{j} a_{ii} + \sum_{i=1}^{n} (a_{ii} - c_{ii}) \]

Lemma:

\[a_{ij} = \frac{1}{|i-j|+1} \]

Proof:

1. \(i \) is an ancestor of \(j \) iff \(i \) has a greater priority than all elements between \(i \) and \(j \), inclusive.
2. there are \(|i-j|+1\) such elements each with equal probability of having the highest priority.

And back to “Posting Lists”

We showed how to take Unions and Intersections, but Treaps are not very space efficient.

Idea: if priorities are in the range \([0..1]\) then any node with priority < 1 - \(\alpha \) is stored compressed. \(\alpha \) represents fraction of uncompressed nodes.
Case Study: AltaVista

How AltaVista implements indexing and searching, or at least how they did in 1998.

Based on a talk by A. Broder and M. Henzinger from AltaVista. Henzinger is now at Google, Broder is at IBM.
- The index (posting lists)
- The lexicon
- Query merging (or, and, andnot queries)

The size of their whole index is about 30% the size of the original documents it encodes.

AltaVista: the index

All documents are concatenated together into one sequence of terms (stop words removed).
- This allows proximity queries
- Other companies do not do this, but do proximity tests in a postprocessing phase
- Tokens separate documents

Posting lists contain pointers to individual terms in the single "concatenated" document.
- Difference encoded
Use Front Coding for the Lexicon

AltaVista: the lexicon

The Lexicon is front coded.
- Allows prefix queries, but requires prefix to be at least 3 characters (otherwise too many hits)

AltaVista: query merging

Support expressions on terms involving:
AND, OR, ANDNOT and NEAR

Implement posting list with an abstract data type called an "Index Stream Reader" (ISR).
Supports the following operations:
- loc() : current location in ISR
- next() : advance to the next location
- seek(k) : advance to first location past k
AltaVista: query merging (cont.)

Queries are decomposed into the following operations:

- **Create**: term → ISR
 ISR for the term
- **Or**: ISR * ISR → ISR
 Union
- **And**: ISR * ISR → ISR
 Intersection
- **AndNot**: ISR * ISR → ISR
 Set difference
- **Near**: ISR * ISR → ISR
 Intersection, almost

Note that all can be implemented with our Treap Data structure.

I believe (from private conversations) that they use a two level hierarchy that approximates the advantages of balanced trees (e.g. treaps).