15-853: Algorithms in the Real World

Cryptography 1 and 2

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash

Some Terminology

Cryptography - the general term
Cryptology - the mathematics
Encryption - encoding but sometimes used as general term
Cryptanalysis - breaking codes
Steganography - hiding message
Cipher - a method or algorithm for encrypting or decrypting
More Definitions

\[
\begin{align*}
\text{Plaintext} & \rightarrow \text{Encryption} & E_k(M) = C \\
\text{Cyphertext} & \rightarrow \text{Decryption} & D_k(C) = M
\end{align*}
\]

- Private Key or Symmetric: $K_1 = K_2$
- Public Key or Asymmetric: $K_1 \neq K_2$

Encryption (K_1, M) = C (cyphertext)

Decryption (K_2, C) = M (plaintext)

Original Plaintext

Cryptanalytic Attacks

- $C =$ ciphertext messages
- $M =$ plaintext messages

Ciphertext Only: Attacker has multiple Cs but does not know the corresponding Ms.

Known Plaintext: Attacker knows some number of (C, M) pairs.

Chosen Plaintext: Attacker gets to choose M and generate C.

Chosen Ciphertext: Attacker gets to choose C and generate M.

What does it mean to be secure?

Unconditionally Secure: Encrypted message cannot be decoded without the key.

Shannon showed in 1943 that key must be as long as the message to be unconditionally secure – this is based on information theory.

A one time pad - xor a random key with a message (Used in 2nd world war)

Security based on computational cost: it is computationally "infeasible" to decode a message without the key.

No (probabilistic) polynomial time algorithm can decode the message.

The Cast

- **Alice**: initiates a message or protocol
- **Bob**: second participant
- **Trent**: trusted middleman
- **Eve**: eavesdropper
- **Mallory**: malicious active attacker

Diagram:

- Alice
- Eve
- Bob
- Trent
- Mallory
Cryptography Outline

Introduction: terminology, cryptanalysis, security

Primitives:
- one-way functions
- one-way trapdoor functions
- one-way hash functions

Protocols: digital signatures, key exchange, ...
Number Theory: groups, fields, ...
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash

Primitives: One-Way Functions

A function
\[Y = f(x) \]

is one-way if it is easy to compute \(y \) from \(x \) but "hard" to compute \(x \) from \(y \)

Building block of most cryptographic protocols
And, the security of most protocols rely on their existence.
Unfortunately, not known to exist. This is true even if we assume \(P \neq NP \).

One-way functions: possible definition

1. \(F(x) \) is polynomial time
2. \(F^{-1}(x) \) is NP-hard

What is wrong with this definition?

One-way functions: better definition

For most \(y \) no single PPT (probabilistic polynomial time) algorithm can compute \(x \)

Roughly: at most a fraction \(1/|x|^k \) instances \(x \) are easy for any \(k \) and as \(|x| \to \infty \)

This definition can be used to make the probability of hitting an easy instance arbitrarily small.
Some examples (conjectures)

Factoring:
\[x = (u,v) \]
\[y = f(u,v) = u^v \]
If \(u \) and \(v \) are prime it is hard to generate them from \(y \).

Discrete Log: \(y = g^x \text{ mod } p \)
where \(p \) is prime and \(g \) is a "generator" (i.e., \(g^1, g^2, g^3, \ldots \) generates all values < \(p \)).

DES with fixed message: \(y = \text{DES}_k(m) \)
This would assume a family of DES functions of increasing key size

One-way functions in private-key protocols

\[y = \text{ciphertext} \]
\[m = \text{plaintext} \]
\[x = \text{key} \]
\[y = f(x) = E_k(m) \]

In a known-plaintext attack we know a \((y,m)\) pair.
The \(m \) along with \(E \) defines \(f(x) \)
\(f(x) \) needs to be easy
\(f^{-1}(y) \) should be hard
Otherwise we could extract the key \(x \).

One-way functions in public-key protocols

\[y = \text{ciphertext} \]
\[x = \text{plaintext} \]
\[k = \text{public key} \]
\[y = f(x) = E_k(x) \]
We know \(k \) and thus \(f(x) \)
\(f(x) \) needs to be easy
\(f^{-1}(y) \) should be hard
Otherwise we could decrypt \(y \).
But what about the intended recipient, who should be able to decrypt \(y \)?

Note the change of role of the key and plaintext from the previous example

One-Way Trapdoor Functions

A one-way function with a "trapdoor"
The trapdoor is a key that makes it easy to invert the function \(y = f(x) \)
Example: RSA (conjecture)
\[y = x^e \text{ mod } n \]
Where \(n = pq \) (\(p, q, e \) are prime)
\(p \) or \(q \) or \(d \) (where \(ed = (p-1)(q-1) \text{ mod } n \)) can be used as trapdoors
In public-key algorithms
\(f(x) = \text{public key} \) (e.g., \(e \) and \(n \) in RSA)
Trapdoor = private key (e.g., \(d \) in RSA)
One-way Hash Functions

\[Y = h(x) \] where
- \(y \) is a fixed length independent of the size of \(x \).
 In general this means \(h \) is not invertible since it
 is many to one.
- Calculating \(y \) from \(x \) is easy
- Calculating any \(x \) such that \(y = h(x) \) give \(y \) is
 hard

Used in digital signatures and other protocols.

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...

Protocols:
- digital signatures
- key exchange

Number Theory: groups, fields, ...
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash

Protocols

Other protocols:
- Authentication
- Secret sharing
- Timestamping services
- Zero-knowledge proofs
- Blind-signatures
- Key-escrow
- Secure elections
- Digital cash

Implementation of the protocol is often the weakest
point in a security system.

Protocols: Digital Signatures

Goals:
1. Convince recipient that message was actually
 sent by a trusted source
2. Do not allow repudiation, i.e., that's not my
 signature.
3. Do not allow tampering with the message
 without invalidating the signature

Item 2 turns out to be really hard to do
Using private keys

\[E_{K_a}(m) \rightarrow Trent \rightarrow E_{K_b}(m + \text{sig}) \]

- \(K_a \) is a secret key shared by Alice and Trent
- \(K_b \) is a secret key shared by Bob and Trent
- \text{sig} is a note from Trent saying that Alice "signed" it.
- To prevent repudiation Trent needs to keep \(m \) or at least \(h(m) \) in a database

Using Public Keys

\[Alice \rightarrow D_{K_b}(m) \rightarrow Bob \]

- \(K_1 = Alice's \) private key
- Bob decrypts it with her public key

More Efficiently

\[Alice \rightarrow D_{K_b}(h(m)) + m \rightarrow Bob \]

- \(h(m) \) is a one-way hash of \(m \)

Key Exchange

Private Key method

\[E_{K_a}(k) \rightarrow Trent \rightarrow E_{K_b}(k) \]

\[Alice \rightarrow Trent \rightarrow E_{K_b}(k) \]

Public Key method

\[Alice \rightarrow E_{K_b}(k) \rightarrow Bob \]

- Alice generates \(k \)
- Bob generates \(E_{K_b}(k) \)
- \(k = Bob's \) public key

Or we can use a direct protocol, such as Diffie-Hellman (discussed later)

Cryptography Outline

- Introduction: terminology, cryptanalysis, security
- Primitives: one-way functions, trapdoors, ...
- Protocols: digital signatures, key exchange, ...
- Number Theory Review:
 - Groups
 - Fields
 - Polynomials and Galois fields
- Private-Key Algorithms: Rijndael, DES
- Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
- Case Studies: Kerberos, Digital Cash
Number Theory Outline

Groups
- Definitions, Examples, Properties
- Multiplicative group modulo n
- The Euler-phi function

Fields
- Definition, Examples
- Polynomials
- Galois Fields

Why does number theory play such an important role?
It is the mathematics of finite sets of values.

Groups
A Group \((G, \cdot, I)\) is a set \(G\) with operator \(\cdot\) such that:
1. Closure. For all \(a, b \in G\), \(a \cdot b \in G\)
2. Associativity. For all \(a, b, c \in G\), \(a \cdot (b \cdot c) = (a \cdot b) \cdot c\)
3. Identity. There exists \(I \in G\), such that for all \(a \in G\), \(a \cdot I = I \cdot a = a\)
4. Inverse. For every \(a \in G\), there exist a unique element \(b \in G\), such that \(a \cdot b = b \cdot a = I\)

An Abelian or Commutative Group is a Group with the additional condition
5. Commutativity. For all \(a, b \in G\), \(a \cdot b = b \cdot a\)

Examples of groups
- Integers, Reals or Rationals with Addition
- The nonzero Reals or Rationals with Multiplication
- Non-singular \(n \times n\) real matrices with Matrix Multiplication
- Permutations over \(n\) elements with composition
\([0 \to 1, 1 \to 2, 2 \to 0]\) 0 \([0 \to 1, 1 \to 0, 2 \to 2] = [0 \to 0, 1 \to 2, 2 \to 1]\)

We will only be concerned with finite groups, i.e., ones with a finite number of elements.

Key properties of finite groups
Notation: \(a^j = a \cdot a \cdot a \cdot \ldots \cdot j\) times

Theorem (Fermat's little): for any finite group \((G, \cdot, I)\) and \(g \in G\), \(g^{|G|} = I\)

Definition: the order of \(g \in G\) is the smallest positive integer \(m\) such that \(g^m = I\)

Definition: a group \(G\) is cyclic if there is a \(g \in G\) such that \(\text{order}(g) = |G|\)

Definition: an element \(g \in G\) of order \(|G|\) is called a generator or primitive element of \(G\).
Groups based on modular arithmetic

The group of positive integers modulo a prime p
$Z_p^* = \{1, 2, 3, ..., p-1\}$
$*_p$ = multiplication modulo p
Denoted as: $(Z_p^*, *_p)$

Required properties
3. Identity. 1.
4. Inverse. Yes.

Example: $Z_7^* = \{1, 2, 3, 4, 5, 6\}$
$1^1 = 1, 2^1 = 2, 3^1 = 3, 4^1 = 4, 5^1 = 5, 6^1 = 6$

Other properties

$|Z_p^*| = (p-1)$
By Fermat’s little theorem: $a^{(p-1)} = 1 \pmod{p}$

Example of Z_7^*

<table>
<thead>
<tr>
<th>x</th>
<th>x^2</th>
<th>x^3</th>
<th>x^4</th>
<th>x^5</th>
<th>x^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Generators

For all p the group is cyclic.

What if n is not a prime?

The group of positive integers modulo a non-prime n
$Z_n^* = \{1, 2, 3, ..., n-1\}$, n not prime
$*_{n}$ = multiplication modulo n

Required properties?
1. Closure. ?
2. Associativity. ?
3. Identity. ?
4. Inverse. ?

How do we fix this?

Groups based on modular arithmetic

The multiplicative group modulo n
$Z_n^* = \{m : 1 \leq m < n, \gcd(n,m) = 1\}$
$*_{n}$ = multiplication modulo n
Denoted as $(Z_n^*, *_{n})$

Required properties:
3. Identity. 1.
4. Inverse. Yes.

Example: $Z_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$
$1^1 = 1, 2^1 = 2, 4^1 = 4, 7^1 = 7, 8^1 = 8, 11^1 = 11, 13^1 = 13, 14^1 = 14$
The Euler Phi Function

\[\phi(n) = \left| \mathbb{Z}_n \right| = n \prod_{p \mid n} (1 - 1/p) \]

If \(n \) is a product of two primes \(p \) and \(q \), then
\[\phi(n) = pq(1 - 1/p)(1 - 1/q) = (p - 1)(q - 1) \]

Note that by Fermat's Little Theorem:
\[a^{\phi(n)} \equiv 1 \pmod{n} \quad \text{for} \quad a \in \mathbb{Z}_n \]

Or for \(n = pq \)
\[a^{(p-1)(q-1)} \equiv 1 \pmod{n} \quad \text{for} \quad a \in \mathbb{Z}_{pq} \]

This will be very important in RSA!

Generators

Example of \(\mathbb{Z}_{10}^* \): \{1, 3, 7, 9\}

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x^2)</th>
<th>(x^3)</th>
<th>(x^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

For \(n = (2, 4, p^e, 2p^e) \), \(p \) an odd prime, \(\mathbb{Z}_n \) is cyclic

Operations we will need

Multiplication: \(a \cdot b \pmod{n} \)
- Can be done in \(O(\log^2 n) \) bit operations, or better

Power: \(a^k \pmod{n} \)
- The power method \(O(\log n) \) steps, \(O(\log^3 n) \) bit ops
  ```
  fun pow(a,k) =
    if (k = 0) then 1
    else if (k mod 2 = 1)
      then a * (pow(a,k/2))^2
    else (pow(a,k/2))^2
  
  Inverse**: \( a^{-1} \pmod{n} \)
- Euclid's algorithm \( O(\log n) \) steps, \( O(\log^3 n) \) bit ops

---

Euclid's Algorithm

Euclid's Algorithm:
\[ \gcd(a,b) = \gcd(b,a \mod b) \]
\[ \gcd(a,0) = a \]

"Extended" Euclid's algorithm:
- Find \( x \) and \( y \) such that \( ax + by = \gcd(a,b) \)
- Can be calculated as a side-effect of Euclid's algorithm.
- Note that \( x \) and \( y \) can be zero or negative.

This allows us to find \( a^{-1} \pmod{n} \), for \( a \in \mathbb{Z}_n^* \)
In particular return \( x \) in \( ax + ny = 1 \).
Euclid's Algorithm

fun euclid(a, b) =
  if (b = 0) then a
  else euclid(b, a mod b)

fun ext_euclid(a, b) =
  gcd
  if (b = 0) then (a, 1, 0)
  else
    let (d, x, y) = ext_euclid(b, a mod b)
    in (d, y, x - (a/b) y)
  end

The code is in the form of an inductive proof.
Exercise: prove the inductive step

Discrete Logarithms

If g is a generator of \( Z_n^* \), then for all \( y \) there is a unique \( x \pmod{\phi(n)} \) such that
\[- y = g^x \pmod{n} \]

This is called the discrete logarithm of \( y \) and we use the notation
\[- x = \log_g(y) \]

In general finding the discrete logarithm is conjectured to be hard...as hard as factoring.

Fields

A Field is a set of elements \( F \) with binary operators \( * \) and + such that
1. \( (F, +) \) is an abelian group
2. \( (F \setminus \{0\}, *) \) is an abelian group
   the "multiplicative group"
3. Distribution: \( a*(b+c) = a*b + a*c \)
4. Cancellation: \( a*I = I \)

The order of a field is the number of elements.
A field of finite order is a finite field.

The reals and rationals with + and * are fields.

Finite Fields

\( Z_p \) (p prime) with + and \( * \pmod{p} \) is a finite field.
1. \( (Z_p, +) \) is an abelian group (0 is identity)
2. \( (Z_p \setminus \{0\}, *) \) is an abelian group (1 is identity)
3. Distribution: \( a*(b+c) = a*b + a*c \)
4. Cancellation: \( a*0 = 0 \)

Are there other finite fields?
What about ones that fit nicely into bits, bytes and words (i.e with \( 2^n \) elements)?
Polynomials over $\mathbb{Z}_p$

$\mathbb{Z}_p[x]$ = polynomials on $x$ with coefficients in $\mathbb{Z}_p$.
- Example of $\mathbb{Z}_3[x]$: $f(x) = 3x^4 + 1x^3 + 4x^2 + 3$
- $\deg(f(x)) = 4$ (the degree of the polynomial)
Operations: (examples over $\mathbb{Z}_3[x]$)
  - Addition: $(x^3 + 4x^2 + 3) + (3x^2 + 1) = (x^3 + 2x^2 + 4)$
  - Multiplication: $(x^3 + 3) \cdot (3x^2 + 1) = 3x^5 + x^3 + 4x^2 + 3$
  - $0_3 = 0, 1_3 = 1$
  - $+ \text{ and } \cdot \text{ are associative and commutative}$
  - Multiplication distributes and $0$ cancels
Do these polynomials form a field?

Division and Modulus

Long division on polynomials ($\mathbb{Z}_3[x]$):

\[
\begin{array}{cc}
\text{Dividend: } x^3 + 4x^2 + 0x + 3 \\
\text{Divisor: } x^2 + 1 \\
\text{Quotient: } 1x + 4 \\
\end{array}
\]

\[
\begin{array}{cccccc}
& x^2 + 0x^1 + 1x^0 & \\
\times & x^2 + 4x^1 + 3x^0 & \\
\hline
x^4 & 4x^3 & + & 0x^2 & + & 4x^1 & + & 3x^0 & \\
\hline
\end{array}
\]

\[(x^3 + 4x^2 + 3)/(x^2 + 1) = (x + 4)\]

\[(x^3 + 4x^2 + 3) \mod (x^2 + 1) = (4x + 4)\]

\[(x^2 + 1)(x + 4) + (4x + 4) = (x^3 + 4x^2 + 3)\]

Polynomials modulo Polynomials

How about making a field of polynomials modulo another polynomial? This is analogous to $\mathbb{Z}_p$ (i.e., integers modulo another integer).

\[e.g. \, Z_3[x] \mod (x^2+2x+1)\]

Does this work?

Does $(x + 1)$ have an inverse?

Definition: An irreducible polynomial is one that is not a product of two other polynomials both of degree greater than 0.

\[e.g. \, (x^2 + 2) \text{ for } Z_3[x]\]

Analogous to a prime number.

Galois Fields

The polynomials $\mathbb{Z}_p[x] \mod p(x)$
where $p(x) \in \mathbb{Z}_p[x]$
$p(x)$ is irreducible,
and $\deg(p(x)) = n$ (i.e. $n+1$ coefficients)
form a finite field. Such a field has $p^n$ elements.
These fields are called Galois Fields or $\mathbb{GF}(p^n)$.
The special case $n = 1$ reduces to the fields $\mathbb{Z}_p$.
The multiplicative group of $\mathbb{GF}(p^n)/(0)$ is cyclic (this will be important later).
**GF($2^n$)**

Hugely practical!
The coefficients are bits $\{0,1\}$.
For example, the elements of GF($2^n$) can be represented as a byte, one bit for each term, and GF($2^{64}$) as a 64-bit word.
- e.g., $x^6 + x^4 + x + 1 = 01010011$

How do we do addition?

**Addition** over $\mathbb{Z}_2$ corresponds to xor.
- Just take the xor of the bit-strings (bytes or words in practice). This is dirt cheap

---

**Multiplication over GF($2^n$)**

typedef unsigned char uc;

uc mult(uc a, uc b) {
    int p = a;
    uc r = 0;
    while(b) {
        if (b & 1) r = r ^ p;
        b = b >> 1;
        p = p << 1;
        if (p & 0x100) p = p ^ 0x11B;
    }
    return r;
}

---

**Finding inverses over GF($2^n$)**

Again, if $n$ is small just store in a table.
- Table size is just $2^n$.
For larger $n$, use Euclid's algorithm.
- This is again easy to do with shift and xors.
Polynomials with coefficients in $\mathbb{GF}(p^n)$

Recall that $\mathbb{GF}(p^n)$ were defined in terms of coefficients that were themselves fields (i.e., $\mathbb{Z}_p$). We can apply this recursively and define:

$\mathbb{GF}(p^n)[x] = \text{polynomials on } x \text{ with coefficients in } \mathbb{GF}(p^n)$.
- Example of $\mathbb{GF}(2^3)[x]$: $f(x) = 001x^2 + 101x + 010$ Where 101 is shorthand for $x^2 + 1$.

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ...
Number Theory: groups, fields, ...
Private-Key Algorithms:
- Block ciphers and product ciphers
- Rijndael, DES
- Cryptanalysis
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash

Private Key Algorithms

Plaintext
\[
\text{Key}_1 \rightarrow \boxed{\text{Encryption}} \quad E_k(M) = C
\]
\[
\text{Ciphertext}
\]
\[
\text{Key}_1 \rightarrow \boxed{\text{Decryption}} \quad D_k(C) = M
\]
Original Plaintext
What granularity of the message does $E_k$ encrypt?

Polynomials with coefficients in $\mathbb{GF}(p^n)$

We can make a finite field by using an irreducible polynomial $M(x)$ selected from $\mathbb{GF}(p^n)[x]$.
For an order $m$ polynomial and by abuse of notation we write: $\mathbb{GF}(\mathbb{GF}(p^n)^m)$, which has $p^m$ elements.
Used in Reed-Solomon codes and Rijndael.
- In Rijndael $p=2$, $n=8$, $m=4$, i.e. each coefficient is a byte, and each element is a 4 byte word (32 bits).
Note: all finite fields are isomorphic to $\mathbb{GF}(p^n)$, so this is really just another representation of $\mathbb{GF}(2^{25})$.
This representation, however, has practical advantages.
Private Key Algorithms

**Block Ciphers**: blocks of bits at a time
- DES (Data Encryption Standard)
  - Banks, Linux passwords (almost), SSL, Kerberos, ...
- Blowfish (SSL as option)
- IDEA (used in PGP, SSL as option)
- Rijndael (AES) - the new standard

**Stream Ciphers**: one bit (or a few bits) at a time
- RC4 (SSL as option)
- PKZip
- Sober, Leviathan, Panama, ...

Private Key: Block Ciphers

Encrypt one block at a time (e.g. 64 bits)
\[ c_i = f(k, m_i) \quad m_i = f(k, c_i) \]

Keys and blocks are often about the same size.
Equal message blocks will encrypt to equal codeblocks
- Why is this a problem?
Various ways to avoid this:
- E.g. \( c_i = f(k, c_{i-1} \oplus m_i) \)
  "Cipher block chaining" (CBC)
Why could this still be a problem?
**Solution**: attach random block to the front of the message

Security of block ciphers

**Ideal**:
- k-bit -> k-bit key-dependent substitution
  (i.e. "random permutation")
- If keys and blocks are k-bits, can be implemented with \( 2^{2k} \) entry table.

Iterated Block Ciphers

Consists of \( n \) rounds
- \( R \) = the "round" function
- \( s_i \) = state after round \( i \)
- \( k_i \) = the \( i^{th} \) round key
**Iterated Block Ciphers: Decryption**

Run the rounds in reverse. Requires that R has an inverse.

\[ m \rightarrow R^{-1} \rightarrow k_1 \rightarrow s_1 \rightarrow k_2 \rightarrow s_2 \rightarrow k_n \rightarrow c \]

**Feistel Networks**

If function is not invertible rounds can still be made invertible. Requires 2 rounds to mix all bits.

**Product Ciphers**

Each round has two components:
- **Substitution** on smaller blocks
  Decorrelate input and output: "confusion"
- **Permutation** across the smaller blocks
  Mix the bits: "diffusion"

**Substitution-Permutation Product Cipher**

**Avalanche Effect:** 1 bit of input should affect all output bits, ideally evenly, and for all settings of other in bits

**Rijndael**

Selected by AES (Advanced Encryption Standard, part of NIST) as the new private-key encryption standard.

Based on an open "competition".
- Narrowed to 5 Sept. 1999
  - MARS by IBM, RC6 by RSA, Twofish by Counterplane, Serpent, and Rijndael
- Official Oct. 2001? (AES page on Rijndael)

Designed by Rijmen and Daemen (Dutch)
Goals of Rijndael

Resistance against known attacks:
- Differential cryptanalysis
- Linear cryptanalysis
- Truncated differentials
- Square attacks
- Interpolation attacks
- Weak and related keys

Speed + Memory efficiency across platforms
- 32-bit processors
- 8-bit processors (e.g., smart cards)
- Dedicated hardware

Design simplicity and clearly stated security goals

High-level overview

An iterated block cipher with
- 10-14 rounds,
- 128-256 bit blocks, and
- 128-256 bit keys

Mathematically reasonably sophisticated

Blocks and Keys

The blocks and keys are organized as matrices of
bytes. For the 128-bit case, it is a 4x4 matrix.

\[
\begin{pmatrix}
  b_0 & b_4 & b_8 & b_{12} \\
  b_1 & b_5 & b_9 & b_{13} \\
  b_2 & b_6 & b_{10} & b_{14} \\
  b_3 & b_7 & b_{11} & b_{15}
\end{pmatrix}

\begin{pmatrix}
  k_0 & k_4 & k_8 & k_{12} \\
  k_1 & k_5 & k_9 & k_{13} \\
  k_2 & k_{10} & k_{14} \\
  k_3 & k_7 & k_{11} & k_{15}
\end{pmatrix}
\]

Data block Key

\( b_0, b_1, ..., b_{15} \) is the order of the bytes in the stream.

Galois Fields in Rijndael

Uses \( GF(2^8) \) over bytes.
The irreducible polynomial is:
\( M(x) = x^8 + x^4 + x^3 + x + 1 \) or 100011011 or 0x11B

Also uses degree 3 polynomials with coefficients from \( GF(2^8) \). These are kept as 4 bytes (used for the columns)
The polynomial used as a modulus is:
\( M(x) = 0000001x^4 + 00000001 \) or \( x^4 + 1 \)
Not irreducible, but we only need to find inverses of polynomials that are relatively prime to it.
Each round

![Diagram](image)

Key

Byte substitution

Rotate Rows

Mix columns

The inverse runs the steps and rounds backwards. Each step must be reversible!

Byte Substitution

Non linear: \( y = b^1 \) (done over \( GF(2^8) \))

Linear: \( z = Ay + B \) (done over \( GF(2) \), i.e., binary)

\[
A = \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
1 \\
0 \\
0 \\
1 \\
\end{pmatrix}
\]

To invert the substitution:

\( y = A^{-1}(z - B) \) (the matrix A is nonsingular)

\( b = y^1 \) (over \( GF(2^8) \))

Mix Columns

For each column \( a \) in data block

\( a_0 \)

\( a_1 \)

\( a_2 \)

\( a_3 \)

compute \( b(x) = (a_3x^3 + a_2x^2 + a_1x + a_0)(3x^3 + x^2 + x + 2) \mod x^4 + 1 \)

where coefficients are taken over \( GF(2^8) \).

New column \( b \) is

\( b_0 \)

\( b_1 \)

\( b_2 \)

\( b_3 \)

where \( b(x) = b_3x^3 + b_2x^2 + b_1x + b_0 \)

Implementation

Using \( x^i \mod (x^4 + 1) = x^{(i \mod 4)} \)

\( (a_3x^3 + a_2x^2 + a_1x + a_0)(3x^3 + x^2 + x + 2) \mod x^4 + 1 \)

\( = (2a_0 + 3a_1 + a_2) + \) \( (a_0 + 2a_1 + 3a_2)x + \) \( (a_0 + 2a_1 + 3a_2)x^2 + \) \( (3a_0 + a_1 + a_2 + 2a_3)x^3 \)

\( C = \)

\[
\begin{pmatrix}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 2 \\
\end{pmatrix}
\]

Therefore, \( b = C \cdot a \)

\( M(x) \) is not irreducible, but the rows of \( C \) and \( M(x) \) are coprime, so the transform can be inverted.
Generating the round keys

Words corresponding to columns of the key

\[ f = \begin{array}{c}
\begin{array}{c}
\text{rotate} \\
\text{sub byte} \\
\text{const}_i
\end{array}
\end{array}\]

Performance

Performance: (600MHz PIII) (from: ssh toolkit):

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Bits/key</th>
<th>Mbits/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES-cbc</td>
<td>56</td>
<td>95</td>
</tr>
<tr>
<td>twofish-cbc</td>
<td>128</td>
<td>140</td>
</tr>
<tr>
<td>Rijndael</td>
<td>128</td>
<td>180</td>
</tr>
</tbody>
</table>

Hardware implementations go up to 2.5 Gbits/sec

Linear Cryptanalysis

A known plaintext attack used to extract the key

Consider a linear equality involving i, o, and k
- e.g.: \[ k_i \oplus k_b = i_2 \oplus i_4 \oplus i_6 \oplus o_4 \]
To be secure this should be true with \( p = .5 \)
(probability over all inputs and keys)
If true with \( p = 1 \), then linear and easy to break
If true with \( p = .5 + \varepsilon \) then you might be able to use
this to help break the system

Differential Cryptanalysis

A chosen plaintext attack used to extract the key

Considers fixed "differences" between inputs,\[ \Delta_i = I_1 - I_2, \]and sees how they propagate into
differences in the outputs, \[ \Delta_o = O_1 - O_2. \]
"difference" is often exclusive OR
Assigns probabilities to different keys based on
these differences. With enough and appropriate
samples \( (I_1, I_2, O_1, O_2) \), the probability of a
particular key will converge to 1.