Course: Algorithms in the Real World (15-853)

Instructors: Guy Blelloch and Daniel Golovin

URL:
www.cs.cmu.edu/~guyb/realworld/indexF08.html

Expected Background

- Asymptotic analysis
- Graph Terminology and Algorithms
 - e.g. what is max flow
- NP-complete problems and reductions
- Matrix algebra
 - e.g. what is the null-space of a matrix
- Probability

Course Requirements

- **Readings**
 - Chapters, papers, course-notes, web documents
 - There is NO course textbook

- **Assignments**
 - About 6 assignments
 - Help grade 1 assignment

- **Midterm and Final**
 - Takehome

Why care about algorithms?

- Just about every field uses algorithms
 - Engineering, Physical sciences, Social sciences
 - Business, Medicine
 - Probably used more widely than Calculus

- The level of sophistication has increased significantly in recent years

- Asymptotics becoming more important
 - Linear programming (interior-point methods)
 - Factoring (number-field sieve)
 - ...

An Exercise

What are the 10 most useful applications of algorithms in the “Real World”

Work in groups of 2 or 3.

You have 15 minutes.

Some Examples

Do cities use interesting algorithms for trash collection?
- RouteSmart

Does your mailman use sophisticated algorithms to pick his routes?
- GeoRoute

Does your janitor select the order of rooms using sophisticated algorithms?
- Probably not

Topics (possible)

Cryptography
 - ssh, RSA, Rijndael, kerberos, ...

Error Correcting Codes
 - Reed-Solomon, tornado-codes, CDs

Computational Biology/String Matching
 - MED, Suffix Trees, BLAST, Genome sequencing

Linear and Integer Programming
 - Interior point methods, airline crew scheduling, ...

Satisfiability

Nearest Neighbor Searching

6 Standard Misconceptions about the Theory of Algorithms

Or "why theory is only of limited use in the real world"

Note: all the following are partially true, so to protect the innocent (and guilty) I will refrain from using names, sometimes.
6: Theory is about worst-case analysis

or, yes there is some average-case analysis, but it is irrelevant also. I care about my problem instances.

Many solutions are of this form, but
1. understanding worst case helps understand what the bad examples are
2. there has been significant work on considering bounds given certain restrictions on data distributions
3. there has been significant work on studying what fraction of cases are hard.

4: Theory is about Runtime Analysis

No, theory is about formalizing models. Consider
1. cryptography
 - what does it mean to be hard to break?
 - what is a public-key cryptosystem?
 - what is a zero-knowledge proof?
2. learning theory
3. information theory
4. graph theory

5: Machine model used to analyze algorithms is broken because it does not account for locality.

Yes the RAM is not a perfect model, but
1. there are many results using various enhancements to the model (IO, cache, streaming). If you care about more accurate costs, consider results for these models.
2. most results do not change qualitatively across models. P vs. NP translates across most models
3. many great ideas come from simplified models that are later translated to more sophisticated models

Side note: a hot topic

Characterizing input classes or properties and analyzing algorithms for those inputs
Any ideas for graphs?
Any ideas for sorting?
Any ideas for point distributions?
3: Most problems studied in theory are irrelevant

Today's irrelevant problem might be tomorrow's multibillion-dollar industry. I mean, who cares about factoring numbers, or about Galois Fields, or about expander graphs?

2: Problems that are not irrelevant are oversimplified

Sometimes, but
1. solving simplified version is often a step on the way to solve the full version.
2. solving a simplified version can help understand why the full version is hard

1: Theory is all about big-O and ignores constant factors

Many important results do use big-O analysis, but
1. There are many results that use exact analysis, sometimes just in highest-order term, e.g. $7n + O(\log n)$
2. Often algorithms with large constant factors are later improved, sometimes with trivial modifications
3. Sometimes the large constant factor is just in the proof (perhaps to simplify it), and not in the real algorithm.

On Strassen's Matrix Multiply

From Numerical Recipes (Press et al., 1986)

"We close the chapter with a little entertainment, a bit of algorithmic prestidigitation and later in the same section

"This is fun, but let's look at practicabilities: If you estimate how large N has to be before the difference between exponent 3 and exponent 2.807 is substantial enough to outweigh the bookkeeping overhead, arising from the complicated nature of the recursive Strassen algorithm, you will find that LU decomposition is in no immediate danger of coming obsolete."
From an Experimental Paper

From an experimental paper (Bailey, Lee and Simon):
"For many years it was thought that [the level at which Strassen's algorithm is more efficient] was well over 1000x1000. In fact, for some new workstations, such as the Sun-4 and SGI IRIS 4D, Strassen is faster for matrices as small as 16x16.

Most modern matrix libraries now supply Strassen as a choice
- IBM ESSL library
- Cray Libraries
- LAPACK library

Planned Topics

Cryptography
Error Correcting Codes
Computational Biology
String Matching
Linear/Integer Programming
Satisfiability
Nearest Neighbors

What each topic will cover

Key problems in the area
- Formal definitions
- How they relate to practice

Many algorithms
- Theory
- Practice

Key applications along with case studies

Some General Themes

Measures of “performance” beyond “Time”
- Quality of results
- Generality
- Simplicity

Transition from theory to practice
- Often an iterative process

Characterizing input
- Input data is rarely "worst case" or even "expected case" when the expectation is over all possible inputs.