Satisfiability (SAT)

The “original” NP-Complete Problem.
- Input:
 Variables $V = \{x_1, x_2, ..., x_n\}$, Boolean Formula Φ (typically in conjunctive normal form (CNF)).
 e.g., $\Phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land ...$
- Output:
 Either a satisfying assignment $f:V \rightarrow \{\text{True}, \text{False}\}$ that makes Φ evaluate to True, OR
 “Unsatisfiable” if no such assignment exists.

Extensions/Related Problems
- Satisfiability Modulo Theories
 Input: a formula Φ in quantifier-free first-order logic.
 Output: is Φ satisfiable?
- Theorem Provers
- Pseudo-boolean optimization
- Planners (Quantified SAT Solvers)

Applications
- Verification:
 - Hardware: Electronic design automation market is about 6 Billion
 - Protocols: e.g., use temporal logic to reason about concurrency
- Software
- Optimization
 - Competitor to Integer Programming solutions in some domains
- Math: Prove conjectures in finite algebra

Annual Competitions
- SAT Competition
- CADE ATP System Competition
- ASP Solver Competition
- SMT-COMP
- Constraint Satisfaction Solver Competition
- Competitition/Exhibition of Termination Tools
- TANCS
- QBF Solvers Evaluation
- Open Source Solvers: SATLIB, SATLive

An Aside: Example Proof by Machine
- Thm: Robbins Algebra = Boolean Algebra
- Robbins Algebra: values $\{0,1\}$ and 3 axioms:
 $x \lor (y \lor z) = (x \lor y) \lor z$
 $x \lor y = y \lor x$
 $\neg (\neg (x \lor y) \lor (x \lor \neg y)) = x$
- Conjectured in 1933
- Proved in 1996 by prover EQP running for 8 days (RS/6000 with ~ 30 MB RAM)
- Limited success since 1990s.
Algorithms for SAT

- Complete (satisfying assignment or UNSAT)
 - Davis-Putnam-Logemann-Loveland algorithm (DPLL)
- Incomplete (satisfying assignment or FAILURE)
 - GSAT
 - WalkSAT

Prerequisite: Proof Systems

- What constitutes a proof of unsatisfiability?
 - For a language L in $\{0,1\}^*$, a proof system for membership in L is a poly-time computable function P such that
 - For all x in L, there is a witness y with $P(x,y) = 1$
 - For all x not in L, for all y, $P(x,y) = 0$
 - Complexity: worst case length of shortest witness for an x in L.

Proof System Examples

- $L =$ satisfiable boolean formulae
- What’s the lowest complexity proof system for this you can come up with?
- What about for $L =$ unsatisfiable boolean formulae?

Proof System Examples

- For unsatisfiability:
 - Witness = truth table T of Φ
 - $P(\Phi, T)$ checks that T is indeed the truth table for Φ, and all entries are zero
 - Corresponds to a (failed) brute force search for a solution
 - Exponential Complexity
 - Is there a proof system for UNSAT with poly complexity? (Does NP = Co-NP?)

Resolution Proof System

- The Resolution Rule:

 For clauses B, C and variable x, From $(B \lor x) \land (C \lor \neg x)$ derive $(B \lor C)$

- Witness = a sequence of valid derivations starting from the clauses of Φ.
- Sound: $(B \lor x) \land (C \lor \neg x)$ implies $(B \lor C)$
- Complete for unsatisfiability:
 - Every unsatisfiable formula has a derivation of a contradiction (i.e., the empty clause).

Duality

- Truth table proof system gives proofs by failed search for a satisfying assignment.
- Resolution proof system gives proofs by showing the initial clauses (constraints) yield a contradiction. This is a systematic search for additional constraints the solution must satisfy.
High level idea for many solvers

- Alternate search for solution with search for properties of any solution:
 - Search for solution in some small part S of the space
 - If search in S fails, search for a reason for this failure, in the form of a new constraint C the solution must satisfy.
 - Search for a solution in a new part of the space, using new constraint to help guide the search
 - Repeat

Notation

- Convenient notational change for SAT:
 - Clauses are sets: \(\{a \lor \neg b \lor c\} \) becomes \(\{a, \neg b, c\} \)
 - Formulae become sets of clauses
 - Partial assignments become sets of literals that contain at most one of \(\{x_i, \neg x_i\} \) for each i.
 - Assignments contain exactly one of \(\{x_i, \neg x_i\} \) for each i.

- Restriction: \(\Phi|_{\{x\}} \) is the residual formula under partial assignment \(\{x\} \), e.g.,
 \[\{a, \neg b, c\}, \{\neg a, b, d\} \] \(\mid_{\{\neg a\}} = \{\neg b, c\} \)

Basic DPLL

- Simple tree search for a solution, guided by the clauses of \(\Phi \).

```
DPLL-recursive(formula F, partial assignment p)
  (F,p) = Unit-Propagate(F, p);
  If F contains clause {} then
    return (UNSAT, null);
  If F = {} then
    return (SAT, p);
  x = literal such that x and \( \neg x \) are not in p;
  (status, p') = DPLL-recursive(F \mid_{\{x\}}, pU\{x\});
  If status == SAT then
    return (SAT, p');
  Else return
    DPLL-recursive(F \mid_{\{\neg x\}}, pU\{\neg x\});
```

Basic DPLL

- If a clause tells you the value of a variable, set it appropriately.

```
Unit-Propagate(formula F, partial assignment p)
  If F has no empty clause then
    While F has a unit clause \( \{x\} \)
      F = F \mid_{\{x\}};
      p = p U \{x\};
  return (F,p)
```

Embellishing DPLL

- Branch Selection Heuristics
- Clause Learning
- Backjumping heuristics
- Watched literals
- Randomized Restarts
- Symmetry breaking
- More powerful proof systems
- ...

Branch Selection Heuristics

- Random
- Max occurrence in clauses of min size
- Max occurrence in as yet unsatisfied clauses
- With probability proportional to some function of how often the literal appears in partial assignments that lead to unsatisfiable restricted formulae.
- ...

Choose a branch. Many heuristics to choose from.
Clause Learning

- When DPLL discovers \(F|_p \) is unsatisfiable, it derives (learns) a reason for this in the form of new clauses to add to \(F \).
- What clauses are learned, and how, make huge differences in performance.
- Trivially learned clause: if \(F|_p \) is unsatisfiable for \(p = \{x_1, x_2, \ldots, x_k\} \), derive clause \(\{\neg x_1, \neg x_2, \ldots, \neg x_k\} \)

But we want short clauses that constrain the solution space a lot...

High level: DPLL w/Clause Learning

DPLL-CL (formula \(F \))
\[
p = ()
\]
While(true)
- Choose a literal \(x \) such that \(x \) and \(\neg x \) are not in \(p \);
- \(p = pU\{x\} \);
- Deduce status from \((F, p) \); // SAT, UNSAT, or unknown
- If status == SAT then return (SAT, p);
- If status == UNSAT then
 - Analyze-Conflict(p); // Add learned clause(s) to \(F \)
 - If \(p = () \) then return (UNSAT, null);
 - Else backtrack; // remove literals from \(p \)
 // based on learned clause(s)
- If status == unknown then continue; // branch again

Deduce

- Tradeoff between searching more partial assignments (going deeper in the tree), and searching for proofs of unsatisfiability higher up in the tree.
- Currently, deduction is typically just iterated unit-propagation. (Other embellishments to DPLL seem to render more complex deduction unhelpful in practice.)

Analyze Conflict: Implication Graph

\[
p = \{\neg x_1, x_3, \neg x_4\}
\]
\[
F = \{\{x_1, x_3\}, \{\neg x_3, x_4, \neg x_5\}\}
\]
What Clauses to Learn?

- Can’t keep everything -- space is a major bottleneck in practice.
- Various heuristics:
 - First unique implication point
 - First new cut
 - Decision cut
 - ...

Backtracking/Backjumping

- For each x in p, maintain:
 - Int depth(x): number of literals in p immediately after x was added to p.
 - Bool flipped(x): did we try the partial assignment with ¬x and all literals at lower depth than x in p?
- If we can derive a conflict clause C containing only x and literals of lower depth in p, then we can backtrack to x:
 - delete all literals with depth > depth(x) from p,
 - If flipped(x) = true, then delete x as well.
- Other heuristics backtrack more aggressively.

Random Restarts

- Restart: keep learned clauses, but throw away p, resample random bits, and start again.
- Essentially a very aggressive backjump.
- Can help performance a lot.
 - Run time distributions appear to be heavy-tailed.

Random Restarts: Heuristics

- Fixed cutoff (always restart after T seconds)
- Cutoff after k restarts is some function f(k)
- f(k) = c*k, c^k, ...
- Restart policies based on predictive models of solver behavior:
 - Bayesian approaches, Dynamic Programming,
 - Online submodular function maximization*

Embellishing DPLL

- Branch Selection Heuristics
- Clause Learning
- Backjumping heuristics
- Watched literals
- Randomized Restarts
- Symmetry breaking
- More powerful proof systems
- ...
Watched Literals

- Clever lazy data structure

Maintain two literals (x,y) per active clause C that are not set to false. (“C watches x,y”)

If x set to true, do nothing
If x set to false,
For each C watching x,
either find another variable for C to watch,
or do unit-propagation on C as appropriate.
For each previously active C’ containing ¬x,
set C’ to watch ¬x
If x is unset, do nothing (!)

Symmetry Breaking

- Symmetry is common in practice (e.g., identical trucks in vehicle routing)
- SAT encoding throws away this info.
- Symmetry is useful for some proofs:
 - e.g., Pigeon-hole principle: Impossible to place (n+1) birds into n bins, such that each bin gets at most one bird.

Pigeon Hole Principle

- Exponentially long proofs via resolution.
- Polynomally long proofs via cutting planes

Binary var x(i,j) = assign bird i to bin j.
1) Each bird i gets a bin: Σ(bins j) x(i,j) = 1
2) Each bin j has capacity one: Σ(birds i) x(i,j) ≤ 1

Summing (1) over birds: Σ(birds i) Σ(bins j) x(i,j) = n+1
Summing (2) over bins: Σ(bins j) Σ(birds i) x(i,j) ≤ n
Combine these to get 0 ≤ -1.

Symmetry Breaking

- Order the variables, imagine assignment as a vector x.
- Identify permutations π on variables, such that if p is a satisfying assignment, then p∗π is.
- Add constraints x ≤ x^π

Example: x = \[[1, 2, 3] \]
\[x^\pi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{pmatrix} \]

Symmetry Breaking

- Helps quickly find if a clause is satisfied (just look at its watched literals)
- Helps quickly identify clauses ripe for unit-propagation.
- “now a standard method used by most SAT solvers for efficient constraint propagation”
 – Gomes et. al. “Satisfiability Solvers”
- Partially explains why deduce step is typically just iterated unit-propagation
Other Proof Systems

- Truth Tables
- Frege Systems (includes resolution as a special case)
- Extended Resolution: Add new vars
- Resolution w/symmetry detection
- Geometric systems (infer cutting planes)
- ...

Incomplete Algorithms

- Returns satisfying assignment or FAILURE
- Based on heuristic search for a solution
- Faster than complete algorithms for many classes of satisfiable instances.
- Examples:
 - GSAT, WalkSAT,
 - Survey Propagation/Belief Propagation
 - Local search algs, Simulated Annealing, ILP, ...

Greedy-SAT

<table>
<thead>
<tr>
<th>GSAT(formula F)</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>For(r = 0 to MAX-ROUNDS)</td>
<td></td>
</tr>
<tr>
<td>Pick random assignment p.</td>
<td></td>
</tr>
<tr>
<td>For (t=0 to MAX-FLIPS)</td>
<td></td>
</tr>
<tr>
<td>If p satisfies F, return p;</td>
<td></td>
</tr>
<tr>
<td>Else</td>
<td></td>
</tr>
<tr>
<td>Find the variable v that if flipped maximizes the increase in satisfied clauses of F.</td>
<td></td>
</tr>
<tr>
<td>Flip(v);</td>
<td></td>
</tr>
<tr>
<td>Return FAILURE;</td>
<td></td>
</tr>
</tbody>
</table>

WalkSAT

<table>
<thead>
<tr>
<th>WalkSAT(formula F)</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>For(r = 0 to MAX-ROUNDS)</td>
<td></td>
</tr>
<tr>
<td>Pick random assignment p.</td>
<td></td>
</tr>
<tr>
<td>For (t=0 to MAX-FLIPS)</td>
<td></td>
</tr>
<tr>
<td>If p satisfies F, return p;</td>
<td></td>
</tr>
<tr>
<td>Else</td>
<td></td>
</tr>
<tr>
<td>Find the variable v that if flipped maximizes the increase in satisfied clauses of F.</td>
<td></td>
</tr>
<tr>
<td>Flip(v);</td>
<td></td>
</tr>
<tr>
<td>Return FAILURE;</td>
<td></td>
</tr>
</tbody>
</table>

WalkSAT Local Search Heuristic

Def: Break count of v relative to p = number of clauses that flipping v in p renders unsatisfied.	41
Pick unsatisfied clause C at random; If some v in C has break count = 0, flip v.	
Else	
With probability β, flip a random variable in C;	
Else with probability (1-β), flip a variable in C with minimum break count.	

Survey Propagation

- Derived from the cavity method in statistical physics.
- Like DPLL with a special branching heuristic: belief-propagation on objects related to SAT solutions ("covers")
- Works really well in practice on some random instances – unclear why.
Phase Transitions in SAT

- For random k-SAT instances, time to solve an instance depends on #clauses/#vars

![Graph showing phase transitions in SAT](image)

Backdoor Sets

- Given a polynomial time subsolver A and formula F, a set S of variables is a strong backdoor if, whenever the vars in S are fixed by partial assignment p, A solves F|_p.
- Some real-world instances of SAT have small backdoor sets (e.g., < 1% of vars).
- Useful in explaining success of certain solvers and restart policies

Model Counting

- Count # of solutions (#P-Complete)
- One idea:
 - Add random parity constraints, until unsatisfiable
 - Each parity constraint eliminates ~1/2 of the solutions.
 - Add k constraints \(\Rightarrow \sim 2^{k-1} \) solutions

Encoding Problems in SAT

- If x then y: \{¬x, y\}
- z = (x and y): \{x, ¬z\}, \{y, ¬z\}, \{¬x, ¬y, z\}
- z = (x XOR y): \{¬x, ¬y, ¬z\}, \{x, y, ¬z\}, \{¬x, y, z\}, \{x, ¬y, z\}
- Planning instances:
 - Constrain length of the plan.
- bit-wise encoding of arithmetic
 - ...

![Diagram showing encoding in SAT](image)