Satisfiability (SAT)
The “original” NP-Complete Problem.
- Input:
 Variables $V = \{x_1, x_2, \ldots, x_n\}$, Boolean Formula Φ (typically in conjunctive normal form (CNF)).
 e.g., $\Phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land \ldots$
- Output:
 Either a satisfying assignment $f: V \rightarrow \{\text{True}, \text{False}\}$ that makes Φ evaluate to True, OR
 “Unsatisfiable” if no such assignment exists.

Extensions/Related Problems
- Satisfiability Modulo Theories
 Input: a formula Φ in quantifier-free first-order logic.
 Output: is Φ satisfiable?
- Theorem Provers
- Pseudo-boolean optimization
- Planners (Quantified SAT Solvers)

Applications
- Verification:
 - Hardware: Electronic design automation market is about $6 Billion
 - Protocols: e.g., use temporal logic to reason about concurrency
- Software
- Optimization
 - Competitor to Integer Programming solutions in some domains
- Math: Prove conjectures in finite algebra

An Aside: Example Proof by Machine
- Thm: Robbins Algebra = Boolean Algebra
- Robbins Algebra: values $\{0,1\}$ and 3 axioms:

 $x \lor (y \lor z) = (x \lor y) \lor z$
 $x \land y = y \land x$
 $\neg (\neg (x \lor y) \land \neg (x \land y)) = x$
- Conjectured in 1933
- Proved in 1996 by prover EQP running for 8 days (RS/6000 with ~30 MB RAM)
- Limited success since 1990s.

Annual Competitions
- SAT Competition
- CADE ATP System Competition
- ASP Solver Competition
- SMT-COMP
- Constraint Satisfaction Solver Competition
- Competition/Exhibition of Termination Tools
- TANCS
- QBF Solvers Evaluation
- Open Source Solvers: SATLIB, SATLive
Algorithms for SAT

- Complete (satisfying assignment or UNSAT)
 - Davis-Putnam-Logemann-Loveland algorithm (DPLL)
- Incomplete (satisfying assignment or FAILURE)
 - GSAT
 - WalkSAT

Prerequisite: Proof Systems

- What constitutes a proof of unsatisfiability?
 - For a language L in $\{0,1\}^*$, a proof system for membership in L is a poly-time computable function P such that
 - For all x in L, there is a witness y with $P(x,y) = 1$
 - For all x not in L, for all y, $P(x,y) = 0$
- Complexity: worst case length of shortest witness for an x in L

Proof System Examples

- $L =$ satisfiable boolean formulae
- What's the lowest complexity proof system for this you can come up with?
- What about for $L =$ unsatisfiable boolean formulae?

Proof System Examples

- For unsatisfiability:
 - Witness = truth table T of Φ
 - $P(\Phi, T)$ checks that T is indeed the truth table for Φ, and all entries are zero
 - Corresponds to a (failed) brute force search for a solution
 - Exponential Complexity
 - Is there a proof system for UNSAT with poly complexity? (Does NP = Co-NP?)

Resolution Proof System

- The Resolution Rule:
 \[
 \text{For clauses } B, C \text{ and variable } x, \quad \text{From } (B \lor x) \land (C \lor \neg x) \text{ derive } (B \lor C)
 \]
- Witness = a sequence of valid derivations starting from the clauses of Φ.
- Sound: $(B \lor x) \land (C \lor \neg x)$ implies $(B \lor C)$
- Complete for unsatisfiability:
 - Every unsatisfiable formula has a derivation of a contradiction (i.e., the empty clause).

Duality

- Truth table proof system gives proofs by failed search for a satisfying assignment.
- Resolution proof system gives proofs by showing the initial clauses (constraints) yield a contradiction. This is a systematic search for additional constraints the solution must satisfy.
High level idea for many solvers

- Alternate search for solution with search for properties of any solution:
 - Search for solution in some small part S of the space
 - If search in S fails, search for a reason for this failure, in the form of a new constraint C the solution must satisfy.
 - Search for a solution in a new part of the space, using new constraint to help guide the search
 - Repeat

Notation

- Convenient notational change for SAT:
 - Clauses are sets: \(\{a \lor \neg b \lor c\} \) becomes \(\{a, \neg b, c\} \)
 - Formulae become sets of clauses
 - Partial assignments become sets of literals that contain at most one of \(\{x_i, \neg x_i\} \) for each i.
 - Assignments contain exactly one of \(\{x_i, \neg x_i\} \) for each i.

Basic DPLL ('60, '62)

- Simple tree search for a solution, guided by the clauses of \(\Phi \).

Basic DPLL

Unit-Propagate(formula F, partial assignment p)

- If F has no empty clause then
 - While F has a unit clause \(\{x\} \)
 - \(F = F|_{x} \)
 - \(p = p \cup \{x\} \)
 - return \((f, p)\)

If a clause tells you the value of a variable, set it appropriately.

Choose a branch. Many heuristics to choose from.

Embellishing DPLL

- Branch Selection Heuristics
- Clause Learning
- Backjumping heuristics
- Watched literals
- Randomized Restarts
- Symmetry breaking
- More powerful proof systems
- ...

Branch Selection Heuristics

- Random
- Max occurrence in clauses of min size
- Max occurrence in as yet unsatisfied clauses
- With probability proportional to some function of how often the literal appears in partial assignments that lead to unsatisfiable restricted formulae.
- ...

...
Clause Learning

- When DPLL discovers $F|_p$ is unsatisfiable, it derives (learns) a reason for this in the form of new clauses to add to F.
- What clauses are learned, and how, make huge differences in performance.
- Trivially learned clause: if $F|_p$ is unsatisfiable for $p = \{x_1, x_2, ..., x_k\}$, derive clause $\{\neg x_1, \neg x_2, ..., \neg x_k\}$
 But we want short clauses that constrain the solution space as much as possible...

High level: DPLL w/Clause Learning

```
DPLL-CL (formula F)
p = {}While(true)
  Choose a literal $x$ such that $x$ and $\neg x$ are not in $p$;
  p = pU{x};
  Deduce status from (F, p); // SAT, UNSAT, or unknown
  If status == SAT then return (SAT, p);
  If status == UNSAT then
    Analyze-Conflict(p); // Add learned clause(s) to F
    If p = {} then return (UNSAT, null);
    Else backtrack; // remove literals from p
      // based on learned clause(s)
    If status == unknown then continue; // branch again
```

Deduce

- Tradeoff between searching more partial assignments (going deeper in the tree), and searching for proofs of unsatisfiability higher up in the tree.
- Currently, deduction is typically just iterated unit-propagation. (Other embellishments to DPLL seem to render more complex deduction unhelpful in practice.)

Analyze Conflict: Implication Graph

```
p = $\{\neg x_1, x_3, \neg x_4\}$
F = $\{x_1, x_3\}, \{\neg x_3, x_4, \neg x_5\}$
```

Impactation Graph

May contain several sources of conflicts.
Implication Graph
The conflict graph for conflict variable \(x_6 \) (solid edges).

Conflict Graphs
The conflict graph for conflict variable \(x_6 \) (solid edges).

Analyze Conflict
Every nontrivial cut of each conflict graph yields a conflict clause. Which one(s) do we add to the clause set?

What Clauses to Learn?
• Can’t keep everything -- space is a major bottleneck in practice.
• Various heuristics:
 — First unique implication point
 — First new cut
 — Decision cut
 — ...

Backtracking/Backjumping
• For each \(x \) in \(p \), maintain:
 — \(\text{Int depth}(x) \): number of literals in \(p \) immediately after \(x \) was added to \(p \).
 — \(\text{Bool flipped}(x) \): did we try the partial assignment with \(\neg x \) and all literals at lower depth than \(x \) in \(p \)?
• If we can derive a conflict clause \(C \) containing only \(x \) and literals of lower depth in \(p \), then we can backtrack to \(x \):
 — delete all literals with depth > \(\text{depth}(x) \) from \(p \),
 — if \(\text{flipped}(x) = \text{true} \), then delete \(x \) as well.
• Other heuristics backtrack more aggressively.

Random Restarts
• Restart: keep learned clauses, but throw away \(p \), resample random bits, and start again.
• Essentially a very aggressive backjump.
• Can help performance a lot.
 — Run time distributions appear to be heavy-tailed.
Random Restarts: Heuristics

- Fixed cutoff (always restart after T seconds)
- Cutoff after k restarts is some function $f(k)$
- Luby et. al. universal restart strategy for $f(k)$
 - $f(k) = c^k, c^{k^k}, ...$
- Restart policies based on predictive models of solver behavior:
 - Bayesian approaches, Dynamic Programming,
 - Online submodular function maximization

Embellishing DPLL

- Branch Selection Heuristics
- Clause Learning
- Backjumping heuristics
- Watched literals
- Randomized Restarts
- Symmetry breaking
- More powerful proof systems
- ...

Watched Literals

- Clever lazy data structure
 - Maintain two literals (x,y) per active clause C that are not set to false. ("C watches x,y")
 - If x set to true, do nothing
 - If x set to false,
 - For each C watching x,
 - either find another variable for C to watch, or do unit-propagation on C as appropriate.
 - For each previously active C' containing $\neg x$,
 - set C' to watch $\neg x$
 - If x is unset, do nothing (!)

Watched Literals

- Helps quickly find if a clause is satisfied (just look at its watched literals)
- Helps quickly identify clauses ripe for unit-propagation.
- "now a standard method used by most SAT solvers for efficient constraint propagation"
 - Gomes et. al. “Satisfiability Solvers”
- Partially explains why deduce step is typically just iterated unit-propagation

Symmetry Breaking

- Symmetry is common in practice (e.g., identical trucks in vehicle routing)
- SAT encoding throws away this info.
- Symmetry is useful for some proofs:
 - e.g., Pigeon-hole principle: Impossible to place $(n+1)$ birds into n bins, such that each bin gets at most one bird.
Pigeon Hole Principle

• Exponentially long proofs via resolution.
• Polynomially long proofs via cutting planes

Binary var $x(i,j) = \text{assign bird } i \text{ to bin } j$.
1) Each bird i gets a bin: $\sum_{j} x(i,j) = 1$
2) Each bin j has capacity one: $\sum_{i} x(i,j) \leq 1$

Symmetry Breaking

• Symmetries provided as part of input, or automatically detected (typically via graph isomorphism)
• Impose lexicographically minimal constraints
 - Simple case: If $\{x_i : i = 1,2,\ldots, k\}$ are all interchangeable, add constraints $(x_i, v - x_j)$ for all $i < j$.
 - “If there’s a solution with r of k vars set true, let them be x_1 through x_r.”

Symmetry Breaking

• Order the variables, imagine assignment as a vector x.
• Identify permutations π on variables, such that if p is a satisfying assignment, then $p \cdot \pi$ is.
• Add constraints $x \leq x^\pi$

Example:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Other Proof Systems

• Truth Tables
• Frege Systems (includes resolution as a special case)
• Extended Resolution: Add new vars
• Resolution w/symmetry detection
• Geometric systems (infer cutting planes)
• ...

Incomplete Algorithms

• Returns satisfying assignment or FAILURE
• Based on heuristic search for a solution
• Faster than complete algorithms for many classes of satisfiable instances.
• Examples:
 - GSAT, WalkSAT, Survey Propagation/Belief Propagation
 - Local search algs, Simulated Annealing, ILP, ...

Greedy-SAT

\[
\begin{align*}
\text{GSAT(formula } F &) \\
\text{For}(r = 0 \text{ to } \text{MAX-ROUNDS}) & \quad \text{Pick random assignment } p. \\
& \quad \text{For } (t=0 \text{ to } \text{MAX-FLIPS}) \\
& \quad \text{If } p \text{ satisfies } F, \text{ return } p; \\
& \quad \text{Else} \\
& \quad \text{Find the variable } v \text{ that if flipped maximizes the increase in satisfied clauses of } F. \\
& \quad \text{Flip}(v); \\
& \quad \text{Return FAILURE;}
\end{align*}
\]
WalkSAT

WalkSAT(formula F)
For(r = 0 to MAX-ROUNDS)
 Pick random assignment p.
 For (t=0 to MAX-FLIPS)
 If p satisfies F, return p;
 Else
 Return FAILURE;

WalkSAT Local Search Heuristic

Def: Break count of v relative to p = number of clauses that flipping v in p renders unsatisfied.

Pick unsatisfied clause C at random;
If some v in C has break count = 0, flip v.
Else
 With probability β, flip a random variable in C;
 Else with probability (1-β), flip a variable in C with minimum break count.

Greedy Move
Random Walk Move

Survey Propagation

• Derived from the cavity method in statistical physics.
• Like DPLL with a special branching heuristic: belief-propagation on objects related to SAT solutions (“covers”)
• Works really well in practice on some random instances – unclear why.

Phase Transitions in SAT

• For random k-SAT instances, time to solve an instance depends on #clauses/#vars

Source: Satisfiability Solvers
Gomes, Kautz, Sabharwal, Selman

Backdoor Sets

• Given a polynomial time subsolver A and formula F, a set S of variables is a strong backdoor if, whenever the vars in S are fixed by partial assignment p, A solves F|_p.
• Some real-world instances of SAT have small backdoor sets (e.g., < 1% of vars).
• Useful in explaining success of certain solvers and restart policies

Model Counting

• Count # of solutions (#P-Complete)
• One idea:
 – Add random parity constraints, until unsatisfiable
 – Each parity constraint eliminates ~1/2 of the solutions.
 – Add k constraints \(\rightarrow\) \(~2^{k-1}\) solutions
Encoding Problems in SAT

- If x then y: $\{\neg x, y\}$
- $z = (x \text{ and } y)$: $\{x, \neg z\}, \{y, \neg z\}, \{\neg x, \neg y, z\}$
- $z = (x \text{ XOR } y)$: $\{\neg x, \neg y, \neg z\}, \{x, y, \neg z\}, \{\neg x, y, z\}, \{x, \neg y, z\}$

Planning instances:
 - Constrain length of the plan.
- bit-wise encoding of arithmetic
- \ldots