
Research on Proof-Carrying Code for Untrusted-Code Security

George Necula Peter Lee
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213�
petel,necula � @cs.cmu.edu

1 Introduction

A powerful method of interaction between two software
systems is through mobile code. By allowing code to be
installed dynamically and then executed, a host system can
provide a flexible means of access to its internal resources
and services. There are many problems to be solved before
such uses of untrusted code can become practical. For this
position paper, we will focus on the problem of how to es-
tablish guarantees about the intrinsic behavior of untrusted
programs. Of particular interest are the following: (1) How
can the host system ensure that the untrusted code will not
damage it, for example, by corrupting internal data struc-
tures? (2) How can the host ensure that the untrusted code
will not use too many resources (such as CPU, memory, and
so forth) or use them for too long a time period?; and, (3)
How can the host make these assurances without undue ef-
fort and deleterious effect on overall system performance?

Our position is that the theory of programming lan-
guages, including formal semantics, type theory, and ap-
plications of logic, are critical to solving the untrusted-code
security problem. To illustrate the possibilities of program-
ming language theory, we will briefly describe one rather
extreme but promising example, which is proof-carrying
code (PCC).

2 Proof-Carrying Code

Proof-Carrying Code is a technique by which the host
establishes a set of safety rules that guarantee safe behavior
of programs, and the code producer creates a formal safety
proof that proves, for the untrusted code, adherence to the
safety rules. Then, the host is able to use a simple and fast
proof validator to check, with certainty, that the proof is
valid and hence the foreign code is safe to execute.

In order to gain some preliminary experience with PCC,
we have performed several experiments with user-level
code downloaded in an operating system kernel. For ex-
ample, in [2] we show that, using PCC, we can safely allow
the user to download network packet filters written in hand-
optimized assembly language, with obvious performance
benefits over approaches using interpretation or safe lan-
guages. And all this with safety proofs smaller than 1K and

one-time proof validation below 2ms. We measured similar
costs of using PCC in other experiments [1].

There are many advantages in using PCC for mobile
code. First, almost the entire burden of ensuring security
is shifted to the code producer. The host, on the other hand,
has only to perform a fast, simple, and easy-to-trust proof-
checking process. The trustworthiness of the proof-checker
is an important advantage over approaches that involve the
use of complex compilers or interpreters in the host.

Second, PCC programs are “tamperproof,” in the sense
that any modification (either accidental or malicious) will
either result in a proof that is no longer valid, or one that
does not correspond to the enclosed program. In both these
cases the program will be rejected.

Third, as opposed to cryptography, no trusted third par-
ties are required because PCC is checking intrinsic prop-
erties of the code and not its origin. In this sense, PCC
programs are “self-certifying.” On the other hand, PCC is
completely compatible with other approaches to untrusted-
code security.

We have briefly described one approach, proof-carrying
code, that illustrates the potential of programming-language
theory in this arena, essentially through the exploitation of
static checking. It is our position that the theory of program-
ming languages, which we take to include formal seman-
tics, type theory, and logic, provides methods and systems
that will be critical to achieving a high level of security in
mobile-code applications. While there are still many diffi-
cult research problems to be solved, we believe that the past
and current results show enough potential to warrant a great
deal of further work.

References

[1] NECULA, G. C., AND LEE, P. Proof-carrying code.
Technical Report CMU-CS-96-165, Computer Science
Department, Carnegie Mellon University, Dec. 1996.
Also appeared as FOX memorandum CMU-CS-FOX-
96-03.

[2] NECULA, G. C., AND LEE, P. Safe kernel extensions
without run-time checking. In Second Symposium on



Operating Systems Design and Implementations (Oct.
1996), Usenix, pp. 229–243.


