
Generating Robust Schedules through Temporal Flexibility

Nicola Policella
Planning & Scheduling Team

ISTC-CNR
Rome, Italy

policella@ip.rm.cnr.it

Stephen F. Smith
The Robotics Institute

Carnegie Mellon University
Pittsburgh, USA

sfs@cs.cmu.edu

Amedeo Cesta
Planning & Scheduling Team

ISTC-CNR
Rome, Italy

cesta@ip.rm.cnr.it

Angelo Oddi
Planning & Scheduling Team

ISTC-CNR
Rome, Italy

oddi@ip.rm.cnr.it

Abstract

This paper considers the problem of generating partial order
schedules (���), schedules that retain temporal flexibility
and thus provide some degree of robustness in the face of un-
predictable execution circumstances. We begin by proposing
a set of measures for assessing and comparing the robustness
properties of alternative ���s. Then, using a common solv-
ing framework, we develop two orthogonal procedures for
constructing a��� . The first, which we call the resource en-
velope based approach, uses computed bounds on cumulative
resource usage (i.e., a resource envelope) to identify poten-
tial resource conflicts, and progressively winnows the total
set of temporally feasible solutions into a smaller set of re-
source feasible solutions by resolving detected conflicts. The
second, referred to as the earliest start time approach, instead
uses conflict analysis of a specific (i.e., earliest start time)
solution to generate an initial fixed-time schedule, and then
expands this solution to a set of resource feasible solutions in
a post-processing step. We evaluate the relative effectiveness
of these two procedures on a set of project scheduling bench-
mark problems. As might be expected, the second approach,
by virtue of its more focused analysis, is found to be a more
efficient��� generator. Somewhat counterintuitively, how-
ever, it is also found to produce���s that are more robust.

Introduction
In most practical scheduling environments, off-line sched-
ules can have a very limited lifetime and scheduling is really
an ongoing process of responding to unexpected and evolv-
ing circumstances. In such environments, insurance of ro-
bust response is generally the first concern. Unfortunately,
the lack of guidance that might be provided by a schedule
often leads to myopic, sub-optimal decision-making.

One way to address this problem is reactively, through
schedule repair. To keep pace with execution, the repair
process must be both fast and complete. The response to
a disruption must be fast because of the need to re-start ex-
ecution of the schedule as soon as possible. A repair must
also be complete in the sense of accounting for all changes
that have occurred, while attempting to avoid the introduc-
tion of new changes. As these two goals can be conflicting, a
compromise solution is often required. Different approaches

Copyright c� 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

exist and they tend to favor either timeliness (Smith 1994) or
completeness (El Sakkout & Wallace 2000) of the reactive
response.

An alternative, proactive approach to managing execution
in dynamic environments is to focus on building schedules
that retain flexibility and are able to absorb some amount
of unexpected events without rescheduling. One technique
consists of factoring time and/or resource redundancy into
the schedule, taking into account the types and nature of un-
certainty present in the target domain (Davenport, Gefflot,
& Beck 2001). An alternative technique is to construct an
explicit set of contingencies (i.e., a set of complementary
solutions) and use the most suitable with respect to the ac-
tual evolution of the environment (Drummond, Bresina, &
Swanson 1994).

Both of these proactive techniques presume an awareness
of the possible events that can occur in the operating envi-
ronment, and in some cases, these knowledge requirements
can present a barrier to their use. For this reason, in the
perspective of robust approaches, we consider a less knowl-
edge intensive approach: to simply build solutions that retain
temporal flexibility where problem constraints allow. We
take two solution properties –the flexibility to absorb unex-
pected events and a solution structure that promotes local-
ized change– as our primary solution robustness objectives,
to promote both high reactivity and solution stability as ex-
ecution proceeds.

We develop and analyze two methods for producing tem-
porally flexible schedules. Both methods follow a general
precedence constraint posting (PCP) strategy, which aims
at the construction of a partially ordered solution, and pro-
ceeds by iteratively introducing sequencing constraints be-
tween pairs of activities that are competing for the same
resources. The methods differ in the way that they de-
tect and analyze potential resource conflicts (also referred
to as resource contention peaks). The first method uses a
pure least commitment approach. It computes upper and
lower bounds on resource usage across all possible execu-
tions according to the exact computations recently proposed
in (Muscettola 2002) (referred to as the resource envelope),
and successively winnows the total set of time feasible so-
lutions into a smaller resource-feasible set. The second
method, alternatively, takes the opposite extreme approach.
It utilizes a focused analysis of one possible execution (the

early start time profile) as in (Cesta, Oddi, & Smith 1998;
2002), and establishes resource feasibility for a specific
single-point solution (the early start time solution). This sec-
ond approach is coupled with a post-processing phase which
transforms this initially generated point solution into a tem-
porally flexible schedule. These two algorithms are evalu-
ated on a challenging benchmark from the OR literature and
solution sets produced in each case compared with respect
to solution robustness properties. Before describing these
methods, we first define the scheduling problem of inter-
est and propose some candidate measures for characterizing
schedule robustness.

The Scheduling Problem
Given a set of activities, a set of temporal constraints and
a set of resources with limited capacity, a scheduling prob-
lem consists of finding a temporal allocation of each activity
such that all the resources are used consistently. In this work,
we use the Resource-Constrained Project Scheduling Prob-
lem with Minimum and Maximum time lags (RPCSP/max)
as a reference. This problem involves synchronizing the use
of a set of renewable resources � � ��� � � � ��� to perform
a set of activities � � ��� � � � ��� over time. The execution
of each activity is subject to the following constraints:

- each activity �� has a duration ����� , a start time ��� and
an end time ��� such that ��� � ��� � ����� ;

- each activity �� requires the use of ���� units of the re-
source �� for all of �����

- a set of temporal constraints 	�� each defined for a pair of
activities ���
 ��� and of the form of 	���

�� � ��� � ��� �
	���
�� ;

- each resource �� has an integer capacity ���� � �;

A solution to a RCPSP/max is any temporally consistent as-
signment of start times of all activities in � which does not
violate resource capacity constraints.

CSP representation. Our work is centered on a fairly
standard CSP representation of the scheduling problem. The
CSP (Constraint Satisfaction Problem) representation allows
us to separate the temporal constraints (a temporal con-
straints network) from the resource constraints.

The base of our representation is the temporal constraints
network which corresponds to a Simple Temporal Problem
(STP). Each activity �� to be scheduled has associated with
it two relevant events: the start time, ��� , and the end time,
��� . All these events create a set � of temporal variables
�
named time points. We will identify the time points associ-
ated with start and end time of each activity �� as
����

��
respectively. Additionally, two dummy time points
 � and

���� are used for representing the origin and the horizon of
the problem, that is
� �
� �
���� �� � �
 � � �
 ��.

Both the duration of the activity and the constraints be-
tween any pair of activities are represented as time con-
straints between time points:
�� �
���� � ����� and
	���
�� �
� �
� � 	���

�� . A directed edge-weighted graph
�����
 ��� named distance graph is associated with the
STP. In the distance graph the set of nodes �� represents

the set of time points and the set of edges �� represents the
set of constraints. Based on such a representation, ��� and
���� are, respectively, the maximum and the minimum dis-
tance between the two nodes
� and
� . According to well
known properties (Dechter, Meiri, & Pearl 1991), the STP
is consistent iff its distance graph �� has no negative cycles
and two consistent scenarios are obtained by allocating each
time point
� to its earliest start time, ����, or to its latest
start time, ���.

Superimposed on top of the temporal representation,
functions ���
� for each resource �� � � are used to repre-
sent resource availability over time. To model the resource
usage of single activities, a value ���� is associated with
each activity at each time point
� to represent the change
of resource availability. In particular, for RCPSP/max, a
resource “allocation” is associated with each activity start
time and a resource “deallocation” is associated with the
end time. Assuming �� is the set of solutions to the STP
and given a consistent assignment � � �� , we can define
the resource profile for each resource �� as the function:

�	
� �
� �

�

��� �	��

���� (1)

This function allows us to express the resource constraint as
an n-ary constraint on the set of time points � . An assign-
ment � � �� is said to be resource consistent (or resource
feasible) if and only if for each resource �� the following
property holds:

� �
�

��� �	��

���� � ���� (2)

Schedule Robustness
In the realm of scheduling problems different sources of un-
certainty can arise: durations may not be exactly known,
resources may have lower capacity than expected (e.g., due
to machine breakdowns), new tasks may need to be taken
into account. In this respect a desirable characteristics of a
schedule is its stability. In fact, the solution has to avoid
amplification of the effects of a change over all its compo-
nents. Keeping a solution as stable as possible has notable
advantages. For instance a schedule might involve many
people, each with different assigned tasks. Changing every-
one’s task may lead to much confusion. Our general goal is
to generate schedules that achieve these solution robustness
properties. We consider a solution to a scheduling problem
to be robust if it provides an ability to absorb external events
and it is structured in a way that promotes solution stability.

In this paper we consider the generation of temporally
flexible schedules from this perspective. Within a tempo-
rally flexible schedule, each activity preserves a set of pos-
sible allocations, and these options provide a basis for re-
sponding to unexpected disruptions. More precisely, we
will focus on the construction of partially ordered solutions
(temporally consistent) that are also solutions of the overall
problem (resource consistent). The aim is not to arrive to a
single schedule but to instead identify a set of schedules that
in the following is called Partial Order Schedule:

Definition 1 (Partial Order Schedule) A Partial Order
Schedule �	
 for a problem � is a graph, where the nodes
are the activities of � and the edges represent temporal
constraints between pairs of activities, such that any
possible temporal solution is also a consistent assignment.

Notice that the temporal constraints referred to in Defini-
tion 1 are both those defined in the problem and those added
to solve it.

A �	
 provides the opportunity to reactively respond to
external changes by simply propagating the effects of these
changes over the Simple Temporal Problem (a polynomial
time calculation), and hence can minimize the need to re-
compute new solutions from scratch. The challenge here is
to create scheduling algorithms that create “good” �	
� ,
where the “goodness” of a �	
 is reflected by its size, the
number of schedules that it “contains”. In general, the larger
the size of the �	
 the more flexible it is, since �	
 size
is directly proportional to the ability to pick a tailored sched-
ule for the actual evolution of the world.

The concepts introduced above are still quite vague al-
though they give high-level intuition. We need a set of met-
rics for evaluating the quality of a �	
 in terms of these
described features.

Evaluation Criteria. We will introduce three different
metrics, the first two aim at evaluating the robustness of
the solution by estimating its flexibility (size); the third esti-
mates schedule stability.

The first measure is taken from (Aloulou & Portmann
2003) and called ������
. It consists of counting the num-
ber of pairs of activities in the solution which are not recip-
rocally related (i.e., not ordered with respect to one another
by precedence constraints in the �	
. This metric pro-
vides an analysis of the configuration of the solution. The
rationale for this measure is that when two activities are not
related. it is possible to move one without moving the other
one. So the higher the value of ������
 the lower the degree
of interaction among the activities.

A second metric is taken from (Cesta, Oddi, & Smith
1998) and is based on the temporal slack associated with
each activity:

���
 �
�

����

������
 ���� � �����
 ��� ��

�
 �
 �� � ��

 ��� (3)

In 3,� is the horizon of the problem,� is the number of ac-
tivities and ��
��

��� is the distance between the two time
points. This metric characterizes the fluidity of a solution,
i.e., the ability to use flexibility to absorb temporal variation
in the execution of activities. The higher the value of ���
,
the less the risk of a “domino effect”, i.e. the higher the
probability of localized changes.

Whereas the previous parameters summarize the flexibil-
ity of a solution, we introduce a third measure, called dis-
ruptibility, to take into account the impact of disruptions on
the schedule:

���� �
�

�

��

���

���	���
�������������
����

(4)

The value ���	��� � ������ �������� represents the tempo-
ral flexibility of each activity � � , i.e., the ability to absorb
a change in the execution phase (
�� is the end time of ��
and �����, ����� are respectively its maximum and minimum
possible value). Through the function �������������
����
the number of entailed changes given a right shift��� of the
activity �� is computed. This function calculates the effect
of propagating the value ��� forward, counting the num-
ber of activities which are shifted (changed) in the process.
In the empirical evaluation presented later in the paper, we
will assume the biggest possible shift � � � ���	��� when
computing the number of changes. Such a metric gives an
estimate of stability that incorporates the trade-off between
the flexibility of each activity, ���	��� , and the number of
changes implied, �������������
����. The latter can be
seen as the price to pay for the flexibility of each activity.

We now turn the attention to algorithms for generating
�	
s and an analysis of how they perform with respect to
these metrics.

A baseline PCP solver
To provide a basic framework for generating �	
s, we re-
consider the work of some of the authors on Precedence
Constraint Posting (PCP) algorithms for solving schedul-
ing problems (Smith & Cheng 1993; Cesta, Oddi, & Smith
1998; 2002). A PCP algorithm aims at synthesizing addi-
tional precedence constraints between pairs of activities for
purposes of pruning all inconsistent allocations of resources
to activities. The algorithm uses a Resource Profile (Defini-
tion 1) to analyze resource usage over time and detect peri-
ods of resource conflict (contention peaks). We will see how
different ways of computing and using the resource profile
lead to different PCP-like algorithms.

Algorithm 1 shows a basic greedy algorithm for prece-
dence constraint posting. Within this framework, a solution
is produced by progressively detecting time periods where
resource demand is higher than resource capacity and post-
ing sequencing constraints between competing activities to
reduce demand and eliminate capacity conflicts. Given a
problem, expressed as a partial ordered plan, the first step of
the algorithm is to build an estimate of the required resource
profile according to current temporal precedences in the net-
work. This analysis can highlight contention peaks, where
resource needs are greater then resource availability.

Conflict collection. To be more specific, we call a set
of activities whose simultaneous execution exceeds the re-
source capacity a contention peak. The function Select-
Conflict-Set(��) of Algorithm 1 collects all the peaks in the
current schedule, ranks them, picks the more critical and se-
lect a conflict from this last peak.

The simplest way to extract a conflict from a peak is
through pairwise selection. It consists of collecting any
competing activity pairs ���
 ��� associated with a peak and
ordering such activities with a new precedence constraint,
������������ . The myopic consideration on any pair of
activities in a peak can, however, lead to an over commit-
ment. For example, consider a resource �� with capacity
���� � � and three activities ��, �� and �� competing

greedyPCP(�)
Input: A problem �
Output: A solution �

�� � �
if Exists an unresolvable conflict in �� then

return FAILURE
else

�� � Select-Conflict-Set(��)
if�� � � then

� � ��
else

��� � ���� Select-Leveling-Constraint(��)
�� � �� � ��� � ���
� � greedyPCP(��)

return �

Figure 1: Template of a greedy PCP algorithm

for this resource. Assume that each activity requires respec-
tively �, � and � units of the resource. Consideration of all
possible pairs of activities will lead to consideration of the
pair ���
 ���. But the sequencing of this pair will not resolve
the conflict because the combined capacity requirement does
not exceed the capacity.

An enhanced conflict selection procedure which avoids
this problem is based on identification of Minimal Critical
Sets inside each contention peak. A contention peak desig-
nates a conflict of a certaiin size (corresponding to the num-
ber of activities in the peak). A Minimal Critical Set, MCS, is
a conflict such that no proper subset of activities contained
in MCS is itself a conflict (Laborie & Ghallab 1995). The
idea is to represent conflicts as MCSs and eliminating them
by ordering any two activities included in the MCS.

As in previous research, we integrate MCS analysis to
characterize conflicts within contention peaks. To avoid
the exponential computational expense of full MCS analysis,
we also import two MCS sampling procedures from (Cesta,
Oddi, & Smith 2002):

Linear sampling: instead of collecting all MCSs, we use a
linear function of complexity����, where � is the size of
the peak, to sample a subset of MCSs;

Quadratic sampling: under this scheme, a larger subset of
MCSs are selected using a procedure of complexity�����,
where � is the size of the peak.

In what follow we will utilize three different operators for
gathering conflicts: the simple pairwise selection, and the
increasingly accurate linear and quadratic MCS sampling.

Conflict selection and resolution. Independent of
whether conflict selection is performed directly from activ-
ity pairs or from sampled MCSs, a single conflict will be
selected for resolution according to the “most constrained
first” principle. Given a selected pair of conflicting activi-
ties, the order between them will be chosen according to a
“least constraining” principle. The basic idea is to resolve
the conflict that is the most “dangerous” and solve it with a
commitment as small as possible.

More specifically, the following heuristics are assumed:

Ranking conflicts: For evaluating the contention peaks we
have used the heuristic estimator K() described in (La-
borie & Ghallab 1995). A conflict is unsolvable if no pair
of activities in the conflict can be ordered. Basically, K()
measures how close a given conflict is to being unsolv-
able.

Slack-based conflict resolution: , to choose an order be-
tween the selected pair of activities we apply dominance
conditions that analyze the reciprocal flexibility between
activities (Smith & Cheng 1993). In the case where both
orderings are feasible, the choice which retains the most
temporal slack is taken.

It is worth underscoring that the above PCP framework es-
tablishes resource feasibility strictly by sequencing conflict-
ing activities. It remains non-committal on activity start
times. As such, PCP preserves temporal flexibility that fol-
lows from problem constraints. Further, the two heuristic
choices adopt a minimal commitment strategy with respect
to preserving temporal slack, and this again favors temporal
flexibility.

Two Profile-Based Solution Methods
As suggested previously, we can specify dramatically dif-
ferent solution methods by varying the approach taken to
generation and use of resource profiles. In this paper, we
consider two extreme approaches: (1) a pure least commit-
ment approach, which uses the resource envelope computa-
tion introduced in (Muscettola 2002) to anticipate all possi-
ble resource conflicts and establish ordering constraints on
this basis, and (2) an “inside-out’ approach which uses the
focused analysis of early start time profiles that we intro-
duced in (Cesta, Oddi, & Smith 1998) to first establish a
resource-feasible early start time solution and then applies a
chaining procedure to expand this early start time solution
into a �	
 . The subsections below consider these compet-
ing approaches in more detail.

Least-Commitment Generation Using Envelopes
The perspective of a “pure” least commitment approach to
scheduling consists of carrying out a refinement search that
incrementally restricts a partial solution (the possible tem-
poral solutions � � ��) with resource conflicts until a set of
solutions (a �	
 in our case) is identified that is resource
consistent. A useful technical result has been produced re-
cently (Muscettola 2002) that potentially can contribute to
the effectiveness of this type of approach with an exact com-
putation of the so-called Resource Envelope. According to
the terminology introduced previously we can define the Re-
source Envelope as follows:

Definition 2 (Resource Envelope) Let �� the set of tempo-
ral solutions � . For each resource �� we define the Resource
Envelope in terms of two functions:

 ���
� �
� � 	
�

	���
��	

� �
��

 ���
� �
� � 	�

	���
��	

� �
��

The use of a Resource Envelope is restricted to the set of
temporally consistent solutions.

Integration of the envelope computation into a PCP algo-
rithm is quite natural. It is used to restrict resource profile
bounds, in accordance with the current temporal constraints
in the underlying STP. In (Muscettola 2002) it is proved
that it is possible to find the tightest possible resource-level
bound for a flexible plan through a polynomial algorithm.
The advantage of using the resource envelope is that all pos-
sible temporal allocations are taken into account during the
solving process. In the remainder of this section we briefly
review the ideas behind computation of the resource enve-
lope. Then we introduce some new properties we have syn-
thesized to make the computation more efficient. Finally,
we give details of how peak detection is performed starting
from an envelope.

Basic envelope properties. To find the maximum (mini-
mum) value of the resource level at an instant
 most meth-
ods subdivide the set of time points � (events) into the fol-
lowing subsets:

- !
: the set of events
� s.t. ��
�
�� �
;

- �
: the set of events
� s.t. ��
�
�� �
 " ��
�
��;

- #
: the set of events
� s.t. ��
�
�� $
.

Since the events in !
 are those which will end before or at
time
, they will not contribute to the value of the resource
profile of �� in the instant
. By the same argument we can
exclude from such a computation the events in #
. Then
the crucial point is to determine which of those in �
 have
to be take into account. In (Muscettola 2002), instead, the
author proves that to find the subset of �
 for computing
the upper (lower) bound, it is possible to avoid enumerating
all the possible combinations of events in �
. Muscettola
shows that a polynomial algorithm can be found through
a reduction to Max-Flow, a well-known tractable problem.
The effectiveness of the reduction is due to the fact that it is
possible to exploit the relations among the set of events and
to consider only a subset of feasible combinations. The de-
tails of the algorithm can be found in the original paper; we
simply recall here that the method broadly consists of build-
ing a Max-Flow problem from the set of events belonging to
�
 and, after the max flow is found, the subset ���� � �

(����), of events that gives the maximum (minimum) value
of the resource level at the instant
, is computed performing
a linear analysis of the residual graph. An important point
is that it is not necessary to compute the resource-level en-
velope at all possible instants
. Indeed, you only need to
compute ���

� at times when either !
 or �
 changes. This
can only happen at ���
�� or ���
�� for any time point
�.

Incremental computation of resource envelopes. A po-
tential drawback to use of an envelope computation within a
scheduling algorithm such as the base PCP solver is the com-
putational burden of the Max-Flow computation. Despite
being polynomial, the computational cost is significant and
can become a limiting factor in the case of larger schedul-
ing problems. In this section, we establish some properties
for computing the envelope incrementally across points of

discontinuity. In (Kumar 2003) a method is proposed for
incrementally computing the resource envelope when a new
constraint is added. That method is complementary to the
properties that we are proposing here.

First, we need to define the overall contribution of a time
point
�. Given a time point
� and a resource �� we define
its overall contribution to be the value:

����� � ���� �
�

�
�������

����

A first theorem allows us to restrict the set of time points for
which ���� must be computed:

Theorem 1 If there exists a time point
� � �
 ��
�� and

� � ������
�, then
� � ������
���.

Proof: By absurd. If were that
� � ������
� and
� %�
������
���, it would means that in
 � � the contribution
of the time point
� is negative. To be negative must exist a
time point
�, ���� " ������ such that
� � �
�� � #

and ��� " �. But the last two formula are inconsistent each
other, indeed if ��� " � then
� � !
 � �
 that disagrees
with
� � #
� �

From this theorem it follows that at each instant
 we need
to consider only the events in�
����� to figure out which
events to insert into����. Moreover, from the previous the-
orem, we can prove the following corollary:

Corollary 1 If �
���������
� � �
�������
� then
������
��� � ������
�.

Unfortunately, for those events that belong to �
 and �
��

but not to ������
� in
 we can claim nothing. Anyway we
can prove the following necessary condition:

Theorem 2 An element
 %� ������
� will belong to
������
��� only if it exists at least either an event
�� , with
���� $ �, such that
�� � #
 ��
�� �!
�� or an event
�� ,
with ���� " �, such that
�� � ��
�������
�� �!
��.

Proof: We prove the two cases separately:
Case 1: if
� � #
 ��
�� � !
�� then a further element is
added to���� only if ���� $ �. Indeed if ���� � � it means
that there exists at least one production
�� that is implied by

�� . Then it would be possible to put only
�� in the set ����

having a bigger value of ���. Then ���� $ �.
Case 2: if it exists
� � ��
�������
�� �!
�� then a fur-
ther element is added to ���� only if ���� " �. Indeed if
���� $ � then it would exist a time point
� s.t. its contribute
����� $ � and the combined contribute of
� and
� is neg-
ative. But this is possible only if ��� ���� that is at least a
time point
� � ��
�������
�� �!
�� s.t. ���� " �� �

The above theorems allow a reduction in the computa-
tional cost of solving a given problem instance with a vari-
ant of a PCP-like solver that incorporates resource envelopes
for guidance, reducing the number of times that it is neces-
sary to recompute the set ���� (Theorem 1), and the size of
set from which to extract it, from �
�� to �
���������
�
(Theorem 2).

Detecting peaks on resource envelopes. Once the Re-
source Envelope is computed it can be used to identify the
current contention peaks and the sets of activities related
to them. A first method (Policella et al. 2003) for col-
lecting peaks consists of the following steps: (1) compute
the resource envelope profile, (2) detect intervals of over-
allocation, and (3) collect the set of activities which can be
potentially executed in such an interval. Unfortunately this
approach can pick activities which are already ordered. For
example, consider a problem with three activities ��, �� and
�� with the same interval of allocation and the precedence
������������. In such a case the above method would
collect the peak ���
 ��
 ���; meanwhile, only two peaks,
���
 ��� and ���
 ���, should be collected in this case.

A more careful method should avoid such an aliasing ef-
fect. In particular a better method derives from considering
the set ����. This method is based on the particular as-
sumption that each activity simply uses resources; without
production and/or consumption. Whether the value of the
resource envelope in
 is greater than the resource capacity,
 �����
� � ����, the contention peak will be composed of
every activity �� such that the time point associated with its
start time is in ���� but not the time point associated with
its end time, that is:

	��
��
&�� ���� � ����
���� � ���� �
�� %� �����

To avoid collection of redundant contention peaks, the ex-
traction of the contention peak will be performed only if
there exists at least one end time of an activity ��,
��, such
that it moves from #
�� to !
 � �
 and at least one start
time of an activity �� ,
����, that moved in ���� since the
last time a conflict peak has been collected.

Inside-Out Generation Using Early Start Profiles
A quite different analysis of resource profiles has been pro-
posed in (Cesta, Oddi, & Smith 1998). In that paper an al-
gorithm called ESTA (for Earliest Start Time Algorithm) was
first proposed which reasons with the earliest start time pro-
file:

Definition 3 (Earliest Start Time Profile) Let ��

� the
earliest start time for the time point
 �. For each resource ��
we define the Earliest Start Time Profile as the function:

���

� �
� �

�

��� ���
���

����

This method computes the resource profile according to one
precise temporal solution: the Earliest Start Time Solution.
The method exploits the fact that unlike the Resource Enve-
lope, it analyzes a well-defined scenario instead of the range
of all possible temporal behaviors.

It is worth noting that the key difference between the earli-
est start time approach with respect to the resource envelope
approach is that while the latter gives a measure of the worst-
case hypothesis, the former identifies “actual” conflicts in
a particular situation (earliest start time solution). In other
words the first approach says what can happen in such a sit-
uation relative to the entire set of possible solutions, the sec-
ond one, instead, what will happen in such a particular case.

Chaining(�
 �)
Input: A problem � and one of its fixed-times schedule �
Output: A partial order solution���

��� � �
Initialize all queues empty
for all activity �� in increasing order w.r.t. � do

for all resource �� do
�� �
for � to ���� do

�� ��
������
�'�������
while ��� � �� do

�� � � �
�� ��
������
�'�������

��� � ��� � �� � ���
Enqueue�'������
 ��)
� � � � �

return ���

Figure 2: Chaining algorithm

The limitation of this approach with respect to our current
purpose is that it ensures resource-consistency of only one
solution of the problem, the earliest start time solution. Us-
ing a PCP computation for solving, we always have a set of
temporally consistent solutions �� . However, ESTA will not
synthesize a set of solutions for the problem (i.e., �� �
),
but the single solution in the earliest start time of the result-
ing STP. Below, we describe a method for overcoming this
limitation and generalizing an early start time solution into
a partial ordered schedule (�	
). This will enable direct
comparison with the �	
 produced by the envelope-based
approach.
Producing a POS with Chaining. A first method for pro-
ducing flexible solutions from an early start time solution
has been introduced in (Cesta, Oddi, & Smith 1998). In
this section we generalize that method for the more general
RCPSP/max scheduling problem considered in this paper
(see Algorithm 2). Given a earliest start solution, a trans-
formation method, named chaining, is defined that proceeds
to create sets of chains of activities. This operation is accom-
plished by deleting all previously posted leveling constraints
and using the resource profiles of the earliest start solution
to post a new set of constraints.

The first step is to consider a resource �� with capacity
	� as a set �� of � � 	� single capacity sub-resources. In
this light the second step is to ensure that each activity is al-
located to the same subset of ��. This step can be viewed
in Figure 3: on the left there is the resource profile of a re-
source ��, each activity is represented with a different color.
The second step consists of maintaining the same subset of
sub-resources for each activity over time. For instance, in
the center of Figure 3 the light gray activities are re-drawn
in the way such that they are always allocated on the fourth
sub-resource. The last step is to build a chain for each sub
resource in ��. On the right of Figure 3 this step is rep-
resented by the added constraints. This explains why the
second step is needed. Indeed if the chain is built taking

into account only the resource profile, there can be a prob-
lem with the relation between the light gray activity and the
white one. In fact, using the chain building procedure just
described, one should add a constraint between them, but
that will not be sound. The second step allows this problem
to be avoided, taking into account the different allocation on
the set of sub-resources ��.

Algorithm 2 uses a set of queues, '������, to represent
each capacity unit of the resource ��. The algorithm starts
by sorting the set of activities according to their start time
in the solution �. Then it proceeds to allocate the capacity
units needed for each activity. It selects only the capacity
units available at the start time of the activity . Then when
an activity is allocated to a queue, a new constraint between
this activity and the previous one in the queue is posted.

Summary of PCP Algorithm Variants
In closing the section we remark again that by working
with different resource profiles we have created two orthog-
onal approaches to generating a �	
: EBA (from Enve-
lope Based Algorithm) and ESTA. One of them has required
a post processing phase to be adapted to the current pur-
pose (from the adaptation, the name ESTA�). Given these
two basic PCP configurations, recall that conflicts can be
extracted from peaks according to three different strategies:
pairwise selection, MCS linear sampling and MCS quadratic
sampling. The combination of these three methods with the
two different approaches to maintaining resource informa-
tion thus leads to six different configurations: three based
on the resource envelope, EBA, EBA+MCS linear, EBA+MCS
quadratic, and three based on the earliest start time profile
, ESTA� , ESTA�+MCS linear, ESTA�+MCS quadratic. The
next section presents a discussion of the results obtained
testing the six approaches on a significant scheduling prob-
lem benchmark: RPCSP/max.

Experimental Evaluation
This section compares the proposed set of algorithms with
respect to our definition of robustness and analyzes to what
extent temporally flexible solutions are also robust solutions,
able to absorb unexpected modifications. We compare the
performance of each algorithm1 on the benchmark prob-
lems defined in (Kolisch, Schwindt, & Sprecher 1998). This
benchmark consists of three sets (��, (�� and (�� of 270
of problem instances of different size ��
 �, ��
 � and
��
 � (number of activities
 number of resources).

1All the algorithms presented in the paper are implemented in
C++ and the CPU times presented in the following tables are ob-
tained on a Pentium 4-1500 MHz processor under Windows XP.

Figure 3: Chaining method: intuition

In a previous section we have introduced two metrics for
time flexibility: ���
 and ������
 . Both these parameters are
correlated with the number of feasible solutions contained
in a �	
. In particular, ������
 is directly correlated to
the number of unrelated pairs of activities (no precedence
constraint) in a partial order schedule.

On the contrary, the evaluation of the disruptibility ����
can be seen as the result of a simulation of solution execu-
tion, such that we consider executions where only one un-
expected event at a time can occur (e.g., activity duration
lasts longer than expected or the start time of an activity is
shifted forward). We report as a result a value correlated
to the average number of activities affected (number of start
time changes) by the set of unexpected events.

In order to produce an evaluation of the three parameters
���
, ������
 and ���� that is independent from the problem
dimension, we evaluate the following incremental parameter
for each generic metric) (i.e., ������
 , ���
 or ����):

�)��

� �
)��� �)�
�

)���

 ���

where)��� and)�
� are respectively the values of the pa-
rameter) for the problem � (the initial partial order) and
its solution
 (the final partial order). We observe that the
value �) is always positive or zero. In fact, for each met-
ric the addition of precedence constraints between activities
that are necessary to establish a resource-consistent solution
can only reduce the initial value)���.

The results obtained, subdivided according to benchmark
set, are given in Tables 1 and 2. First, we observe that all
six tested strategies are not able to solve all the problems in
the benchmark sets (��, (�� and (��. The first column of
Table 2 shows the percentage of solved problems by each
strategy. This observation is particularly important, because
the rest of the experimental results in this section are com-
puted with respect to the subset of problem instances solved
by all the six approaches.

Table 1 presents the main results of the paper for the six
different approaches, according to the three incremental pa-
rameters �) introduced above. In each case, the lower the
values, the better the quality of the corresponding solutions.
In addition, Table 2 complements our experimental analysis
with four more results: (1) percentage of problems solved
for each benchmark set, (2) average CPU-time spent to solve
instances of the problem, (3) average minimum makespan
and (4) the number of leveling constraints posted to solve a
problem.

From Table 1 we first observe that the ESTA� approaches
dominate the EBA approaches across all problem sets for
the two metrics directly correlated to time flexibility. And
this observation is confirmed in the third column (�����)
where better values of flexibility correspond to better values
of disruptibility (stability). Hence, the solutions created with
ESTA� are better able to absorb unexpected events.

This fact induces further observations about the basic
strategies behind the two algorithms. EBA removes all pos-
sible resource conflicts from a problem � by posting prece-
dence constraints and relying on an envelope computation
that produces the tightest possible resource-level bounds for

�������	 ����
 �����

J10 J20 J30 J10 J20 J30 J10 J20 J30

EBA 86.27 83.77 76.80 37.21 35.94 30.77 46.89 42.09 41.63

EBA+MCS linear 83.36 84.94 81.57 35.11 39.57 41.41 44.37 41.49 42.78

EBA+MCS quadratic 83.99 86.54 83.58 35.20 41.81 44.33 44.90 43.23 43.56

ESTA

 80.56 79.96 74.98 32.79 35.27 40.79 35.96 25.99 27.17

ESTA
+MCS linear 79.79 80.41 74.97 32.42 34.87 40.94 34.75 26.74 28.39

ESTA

+MCS quadratic 79.94 80.79 75.26 32.46 35.56 39.61 35.16 28.37 27.55

Table 1: �)��

� for the three metrics ������
 , ���
 and ����.

%solved makespan CPU-time (secs) posted constraints

J10 J20 J30 J10 J20 J30 J10 J20 J30 J10 J20 J30

EBA 77.04 50.74 43.33 58.31 96.48 118.17 0.32 3.88 24.77 11.54 33.40 63.29

EBA+MCS linear 85.19 71.11 68.89 55.29 92.65 112.14 0.77 11.35 48.89 11.12 32.87 56.84

EBA+MCS quadratic 97.78 89.63 82.22 55.47 94.03 116.10 0.91 13.21 68.22 12.38 34.98 59.64

ESTA

 96.30 95.56 96.30 47.35 72.90 79.21 0.32 1.75 5.40 6.40 18.69 35.10

ESTA
+MCS linear 98.15 96.67 96.67 46.63 72.45 78.45 0.34 2.14 8.08 6.23 17.49 34.07

ESTA

+MCS quadratic 98.15 96.67 97.04 46.70 72.75 78.55 0.34 2.27 9.51 6.26 17.40 34.00

Table 2: Overall results.

a flexible schedule. When these bounds are less than or
equal to the resource capacities, we have a resource-feasible
partial order ready to face with uncertainty. However, in
order to remove all possible conflicts EBA has to impose
more precedence constraints than does ESTA� (see column
labeled with posted constraints in Table 2), with the risk
of overcommitment in the final solution. In fact, in com-
paring EBA with ESTA� , it can be seen that the EBA ap-
proach is actually less effective. It solves significantly fewer
problems than ESTA� in each problem set, obtains solutions
with higher makespans, incurs higher CPU times and posts
more precedence constraints. By adding MCS analysis to the
EBA search configuration, we obtain a noticeable improve-
ment of the results. In fact, in the case of quadratic sam-
pling the number of problem solved is closer to that achieved
with the ESTA� approach. However, we pay an higher CPU
time price and there are no significant improvements in the
makespan and in the number of constraints posted (Table 2).

On the other hand, as previously explained, the ESTA� ap-
proach builds a partial order by ensuring only the existence
of an early start time solution and does not remove all the
possible resource conflicts. Rather, in a second step, the ini-
tial partial order is converted into a new one, such that: all
the time feasible solutions are now also resource feasible,
the number of precedence constraints is always ���� and
for each resource, the form of the partial order graph is a set
of parallel chains. These last observations probably identify
the main factors which enable a more robust solution behav-
ior, i.e., ESTA� solutions can be seen as a set of layers, one
for each unit of resource capacity, which can slide indepen-
dently to hedge against unexpected temporal shifts.

A note on envelope efficiency. We end the section with
a final remark about our research goals. The main aim of
this work has not been to find a way to beat an envelope-
based algorithm, but rather to try to understand ways to use
it for finding robust solutions. In this respect, EBA is the

first scheduling algorithm to integrate the recent research re-
sults on exact bound computation into a scheduling frame-
work, and, in addition, we have improved the efficiency of
the envelope computation considerably with respect to our
preliminary experiments (Policella et al. 2003). One spe-
cific result of this paper is a set of properties to reduce its
high associated computational cost.

Indeed, the computation of the envelope implies that it
is necessary to solve a Max-Flow problem for each time-
point. As indicated in (Muscettola 2002), this leads to
an overall complexity of ����� which can be reduced to
������� in practical cases. These computational require-
ments at present limit the effective application of the re-
source envelope. In the current implementation we use a
Max-Flow method based on the pre-flow concept (Goldberg
& Tarjan 1988). The use of the incremental properties de-
scribed in a previous section speeds up the solving process
by avoiding re-computation of the envelope at each step of
the search. Moreover Theorem 2 allows us to apply the Max-
Flow algorithm to a subset of�
: �
�������
���. Overall
the speedup obtained in solving instances of the benchmark
problems is on average around ���. For example the EBA
algorithm takes ����� secs instead of ����� to solve the (��
set.

Conclusion
In this work we have investigated two orthogonal ap-
proaches (EBA and ESTA�) to building scheduling solutions
that hedge against unexpected events. The two approaches
are based on two different methods for maintaining profile
information: one that considers all temporal solutions (the
resource envelope) and one that analyzes the profile for a
precise temporal solution (the earliest start time solution).

To evaluate the quality of respective solutions we intro-
duced three measures that capture desirable properties of ro-
bust solutions. The first two metrics (���
 and ������
) are

correlated to the degree of temporally flexibility that is re-
tained in generated solutions. The third, disruptibility ����,
can alternatively be seen as the result of a simulation of solu-
tion execution, where we consider executions in which only
one unexpected event can occur at a time. In addition, we
focus our attention only to temporal disruptions: situations
where an activity duration lasts longer than expected, or the
start time of an activity is shifted forward.

Considering comparative performance on a set of bench-
mark project scheduling problems, we have shown the two
step ESTA� procedure, which first computes a single-point
solution and then translates it into a temporally flexible, par-
tial order schedule, to be a more effective approach than
the pure, least-commitment EBA approach. In fact, the first
step allows advantage to be taken of the effectiveness of
the ESTA approach (i.e., makespan and CPU time minimiza-
tion), while the second step has been shown to be capable
of re-instating temporal flexibility in a way that produces a
final schedule with better robustness properties.

References
Aloulou, M., and Portmann, M. 2003. An Efficient Proac-
tive Reactive Scheduling Approach to Hedge against Shop
Floor Disturbances. In Proceedings of MISTA 2003.

Cesta, A.; Oddi, A.; and Smith, S. F. 1998. Profile Based
Algorithms to Solve Multiple Capacitated Metric Schedul-
ing Problems. In Proceedings of AIPS-98.

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A Constraint-
based method for Project Scheduling with Time Windows.
Journal of Heuristics 8(1):109–136.

Davenport, A.; Gefflot, C.; and Beck, J. 2001. Slack-based
Techniques for Robust Schedules. In Proceedings of �
�

European Conference on Planning, ECP-01.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence 49:61–95.

Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-Case Scheduling. In Proceedings of AAAI-94.

El Sakkout, H., and Wallace, M. 2000. Probe Backtrack
Search for Minimal Perturbation in Dynamic Scheduling.
Constraints 5(4).

Goldberg, A. V., and Tarjan, R. E. 1988. A New Ap-
proach to the Maximum Flow Problem. Journal of ACM
35(4):921–940.

Kolisch, R.; Schwindt, C.; and Sprecher, A. 1998.
Benchmark Instances for Project Scheduling Problems. In
Weglarz, J., ed., Project Scheduling - Recent Models, Algo-
rithms and Applications. Boston: Kluwer. 197–212.

Kumar, T. K. S. 2003. Incremental Computation of
Resource-Envelopes in Producer Consumer Models. In
Proceedings of CP 2003, LNCS 2833.

Laborie, P., and Ghallab, M. 1995. Planning with Sharable
Resource Constraints. In Proceedings of IJCAI-95.

Muscettola, N. 2002. Computing the Envelope for
Stepwise-Constant Resource Allocations. In Proceedings
of CP 2002, LNCS 2470.

Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A. 2003.
Steps toward Computing Flexible Schedules. In Proceed-
ings of Online-2003 Workshop CP 2003.
Smith, S. F., and Cheng, C. 1993. Slack-based Heuristics
for Constraint Satisfactions Scheduling. In Proceedings of
AAAI-93.
Smith, S. F. 1994. OPIS: A Methodology and Architecture
for Reactive Scheduling. In Fox, M., and Zweben, M., eds.,
Intelligent Scheduling. Morgan Kaufmann.

