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Abstract

The easy-hard-easy pattern in the di�culty of combinatorial search problems as con-
straints are added has been explained as due to a competition between the decrease in
number of solutions and increased pruning. We test the generality of this explanation by
examining one of its predictions: if the number of solutions is held �xed by the choice
of problems, then increased pruning should lead to a monotonic decrease in search cost.
Instead, we �nd the easy-hard-easy pattern in median search cost even when the number of
solutions is held constant, for some search methods. This generalizes previous observations
of this pattern and shows that the existing theory does not explain the full range of the
peak in search cost. In these cases the pattern appears to be due to changes in the size of
the minimal unsolvable subproblems, rather than changing numbers of solutions.

1. Introduction

Recently, many authors have shown that the solution cost for various kinds of combinatorial

search problems follows a pattern of easy-hard-easy as a function of how tightly constrained

the problems are. For example, this pattern appears for graph coloring as a function of

the average graph connectivity (Cheeseman, Kanefsky, & Taylor, 1991; Hogg & Williams,

1994), for propositional satis�ability (SAT) as a function of the ratio of number of clauses to
number of variables (Cheeseman et al., 1991; Mitchell, Selman, & Levesque, 1992; Crawford

& Auton, 1993; Gent & Walsh, 1994b), and for constraint satisfaction problems (CSPs) as a

function of the number of nogoods (Williams & Hogg, 1994) and constraint tightness (Smith,

1994; Prosser, 1996).

This regularity raises the possibility of determining, prior to search, the likely di�culty

of problems. Unfortunately, this is not yet possible because of the high variance associ-

ated with the observations. This is compounded by the fact that a single problem can be

viewed as belonging to a variety of problem classes, each with somewhat di�erent transi-

tion points. Thus one important direction for improvement is to investigate whether there

are simple additional parameters that can reduce this variance and allow predictions with

higher con�dence.
One approach to this question is based on the explanation of the easy-hard-easy pattern

as a competition between changes in the number of solutions and pruning of unproductive
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search paths as a function of some measure of the degree to which the problems are con-
strained. In particular this predicts that problems with many solutions tend to be easier,

on average, than those with fewer for a given number of constraints. Thus, at least one

aspect of the high variance in search cost appears to be due to the variance in number of

solutions in the problems of a �xed degree of constraint. This observation has motivated

the introduction of additional parameters describing problem structure based on a more

precise speci�cation of the number of solutions (Hogg, 1996).

In this paper we investigate the generality of this explanation by examining problems for

which the number of solutions is restricted, including cases where the number is speci�ed

exactly to be either zero or one. If the peak in search cost in fact arises generally from a

competition between changes in the number of solutions and pruning, cases with a �xed

number of solutions should not show a peak. However, we �nd that a peak continues to
appear in these cases for some sophisticated search algorithms, while it fails to appear in

other cases. This calls into question the generality of the explanation based on number of

solutions, and also suggests that a search for additional problem structure parameters based

solely on reducing the variance in the number of solutions is not likely to be su�cient to

accurately predict search cost. However, some structural aspect of problems is likely to be

involved. Speci�cally, we present data showing that the smallest of the problem's minimal

unsolvable subproblems correlates well with search cost.

In the next section we describe some classes of search problems. We then review the

pattern of search behavior and the current theoretical explanation for it. In the following

section we uncover some limitations of this explanation by examining problems with some

speci�cation on their number of solutions. This shows the easy-hard-easy pattern is a more
general phenomenon than suggested by current explanations. We then suggest an alter-

native explanation related to problem structure, and present data for unsolvable problems

showing a positive relationship between this problem structure parameter, the minimum

size of minimal unsolvable subproblem, and search cost. This same problem structure pa-

rameter may explain di�erences in search cost among solvable problems with equal numbers

of solutions, as well. Finally, we discuss some of the implications of these observations and

make suggestions for obtaining a better understanding and greater predictability for hard

search problems.

2. Some Classes of Search Problems

In common with many previous studies of the transition phenomenon, we use random binary

CSPs and graph coloring as example classes of search problems. This section describes how

the problems were generated and searched.

2.1 Random CSPs

The constraint satisfaction problems used in most of our experimental results consist of 10

variables with three possible values for each one, and in some cases, we repeated experiments
with problems of 20 variables. Problem constraints are speci�ed by a number of binary

nogoods, i.e., assignments to a pair of variables that are considered to be inconsistent.

The search problem is then to �nd a consistent complete assignment, i.e., a value for each

variable that does not include any of the inconsistent pairs.
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We generated problems in a number of ways to fully sample the range of behaviors. In
the �rst method (\generate-select") we generate CSPs by randomly selecting the speci�ed

number of binary nogoods. To produce classes of problems with restrictions on their number

of solutions, we determine the number of solutions of these randomly generated problems

and retain only those satisfying these restrictions. For example, to produce a class of

solvable problems, only those with a solution are included. Similarly, to produce a class of

problems with a �xed number of solutions, only those problems with exactly the speci�ed

number of solutions are retained.

This random generation method gives a simple, uniform selection from the various prob-

lem classes. However, it can also be very ine�cient in generating problems. For instance,

with few nogoods, most randomly generated problems are solvable, hence requiring a large

number of random trials to obtain even a few unsolvable cases.
To address this problem, we also used more e�cient (\hill-climbing") methods. Specif-

ically, for generating solvable problems with many nogoods, starting with a randomly gen-

erated unsolvable problem, we removed constraints at random until the problem became

solvable, then restored the number of constraints removed with constraints chosen randomly,

but with the requirement that the problem not become unsolvable again.

For generating unsolvable problems with few nogoods, the hill-climbing method started

with a randomly generated solvable problem, removed the constraint that constrained the

problem the least (the one whose removal increased the number of solutions the least), and

added a randomly chosen constraint that resulted in a problem with fewer solutions than

the problem had before the constraint removal. If, having removed one constraint, no other

constraint could decrease the number of solutions, the constraint that increased the number
of solutions the least was chosen { a slightly backwards step. To speed this process up, we

checked only one third of the possible constraints before giving up, choosing the one that

increased the number of solutions the least, and starting another iteration.

Other methods for generating problems with speci�ed requirements on the number of

solutions have also been studied. One popular method for solvable problems is to randomly

select an assignment to all of the variables (a pre-speci�ed solution) and then, during the

random selection of nogoods, avoid any that are inconsistent with this pre-speci�ed solution.

This tends to emphasize problems with many solutions and results in instances that are

somewhat easier than uniform random selection. Cha & Iwama (1995) have also used the

approach of generating problems with speci�c attributes, for SAT problems, using the AIM

generators (Asahiro, Iwama, & Miyano, 1993).
We solved these problems using dynamic backtracking (Ginsberg, 1993) in most cases,

using random variable and value ordering. For comparison, we also did some searches with

simple chronological backtrack instead. The search cost is measured as the number of nodes

explored.

2.2 Graph Coloring

We also experimented with the 3-coloring problem. This constraint satisfaction problem

consists of a graph and the requirement to assign each node one of three colors so that no

pair of nodes linked by an edge have the same color. Each edge in the graph de�nes some

binary nogoods for the problem, namely all pairs of assignments giving the same color to the
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two nodes connected by the edge. Thus each edge in the graph gives three binary nogoods.
A convenient measure of the number of constraints is , the connectivity or average degree

of the nodes in the graph. This is equal to twice the number of edges in the graph divided

by the number of nodes, because each edge is incident on two nodes. For the 100-node

graphs we studied, the number of binary nogoods is given by 150.
In this case, we used a simple chronological backtrack search in combination with the

Brelaz heuristic for variable and value ordering (Johnson, Aragon, McGeoch, & Schevon,

1991). This heuristic assigns the most constrained nodes �rst (i.e., those with the most

distinctly colored neighbors), breaking ties by choosing nodes with the most uncolored

neighbors, and with any remaining ties broken randomly. The colors are considered in a

�xed ordering for all of the nodes in the search. As a simple optimization, the search never

changes the colors selected for the �rst two nodes. Any such changes would amount to
unnecessarily repeating the search with a permutation of the colors for unsolvable cases.

Search cost is measured by the number of nodes explored.

3. The Easy-Hard-Easy Pattern

In this section, we present an example of the how search cost varies with the tightness

of constraints for a class of problems, and describe how this behavior can be understood

in terms of changes in the structure of the problems, independent of particular search

algorithms. This review and summary of previous studies of the transition then forms a

basis for comparison with the new results presented in subsequent sections.

3.1 An Example

Figure 1 shows a typical example of the easy-hard-easy pattern as a function of the con-

strainedness of the problem. Problems with few or many constraints tend to be easy to

solve while those with an intermediate number are more di�cult. The fraction of solvable

problems is also shown in Figure 1, scaled from 1.0 on the left to 0.0 on the right. This

illustrates that the hard problems are concentrated in the so-called \mushy region" (Smith
& Dyer, 1996) where the probability of a solution is changing from 1.0 to 0.0. In particular,

the peak in search cost is near the \crossover point," the point at which half the problems

are solvable and half unsolvable. For this problem class, the crossover point occurs at just

over 75 binary nogoods, and the peak in dynamic backtracking solution cost occurs at about

85 binary nogoods.

In all of our results in this paper, we include 95% con�dence intervals (Snedecor &

Cochran, 1967). These intervals for the estimate of the median obtained from our samples

are given approximately by the percentiles 50 � 100=
p
N of the data, where N is the

number of samples. For the estimate of fractions the intervals are given approximately by

f � 2
p
f(1� f)=N , where f is the estimated value of the fraction. Finally, for the estimate

of means the intervals are approximately x�1:96�=
p
N where x is the estimate of the mean

and � the standard deviation of the sample. In many cases in this paper, there are su�cient
samples to make these intervals smaller than the size of the plotted points.

A key point from examples such as this is that the di�cult instances within a class of

search problems tend to be concentrated near a particular value of the constraint tightness

(here measured by the number of binary nogoods). Because this behavior is seen for a
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Figure 1: Typical transition pattern. Median solution cost for dynamic backtracking (solid line)
and probability of a solution (dashed line) as a function of number of nogoods. Each
point represents 1000 problems of 10 variables and domain size 3, each solved 100 times.
Error bars showing 95% con�dence intervals are included, but are in some cases smaller
than the size of the plotted points.

variety of search methods, it indicates this concentration does not depend much on the

details of the search algorithm. Instead, it appears to be associated with a change in the

properties of the problems themselves, namely their solvability.

3.2 An Explanation

These observations raise a number of questions, such as why a peak in search cost exists,

why the peak occurs near the transition from mostly solvable to mostly unsolvable problems

and is thus independent of the particular search algorithm, and why this behavior is seen
for a large variety of constraint satisfaction problems.

The existing explanation for the concentration of hard problems relies on a competition

between changes in the number of solutions and the amount of pruning provided by the

problem constraints (Williams & Hogg, 1994). With few constraints, there are many solu-

tions so the search is usually easy. As constraints are added the number of solutions drops

rapidly, making problems harder. But the new constraints also increase the pruning of un-

productive search choices, tending to make search easier. When there are few constraints,

the decrease in the number of solutions overwhelms the increase in pruning, giving harder

problems on average. Eventually the last solution is eliminated and all that remains is the

increased pruning from additional constraints, leading to easier problems. Thus the phase

transition, the point at which there is a precipitous change from solvability to unsolvabil-
ity, more or less coincides with the peak in solution cost. All these e�ects become more

pronounced as larger problems are considered, leading to sharper peaks and more abrupt
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transitions. This qualitative description explains many features of the observed behavior.
This pruning explanation was also o�ered by Cheeseman et al. (1991) with respect to

�nding Hamiltonian circuits in highly constrained problems.

This explanation can also be used to obtain a quantitative understanding of the behavior.

For instance, the location of the transition region can be understood by an approximate

theory predicting that the cost peak occurs when the expected number of solutions equals

one (Smith & Dyer, 1996; Williams & Hogg, 1994). In our example there are 310 possible

assignments to the 10 variables in the problem. There are
�10
2

�
32 = 405 possible binary

nogoods for the problem, which counts the number of ways to select a pair of variables and

the di�erent assignments for that pair. A given complete assignment for the 10 variables will

be a solution provided each of the selected binary nogoods does not use the same assignment

for its pair of variables as in the given complete assignment. This leaves
�10
2

�
(32 � 1) = 360

possible choices for the binary nogoods. Thus the expected number of solutions is given by

310 �
�360
m

�

�405
m

�

for problems with m randomly selected binary nogoods. This expression equals one at

m = 82:9, the location of the observed cost peak. Furthermore, because the expected

number of solutions grows exponentially with the number of variables when m is smaller

than this threshold value and decreases exponentially to zero when m is larger, the range

of m values over which the expected number of solutions is near one rapidly decreases as

variables are added. This accounts for the observed sharpening of the transition for larger

problems.
A further quantitative success of relating the search cost peak to transition phenomena

is the evaluation of scaling behavior of the transition and search cost peak (Kirkpatrick &

Selman, 1994; Gent, MacIntyer, Prosser, & Walsh, 1995).

4. Search Di�culty and Solvability

In this section we take a closer look at the behavior of the search cost, speci�cally, by

examining how the behavior depends on whether the problem has a solution and, if so, the

number of solutions.

4.1 Search Behavior

Figure 2 shows the median dynamic backtracking solution cost for solvable and unsolvable

random CSPs generated as described above, for problems with number of variables n = 10

and n = 20, with domain size three. Except where speci�ed otherwise in the �gure caption,

for problems of 10 variables we generated 1000 solvable and 1000 unsolvable problems for

each point, and for problems of 20 variables we generated 500 solvable and 500 unsolvable

problems for each point, using the \generate-select" method. We also generated unsolvable

problems of 10 variables with 10 to 70 nogoods using the \hill-climbing" method. We
overlap the range of problems generated by the two methods to show how the di�erent

generation methods a�ect search cost.

This �gure clearly shows the easy-hard-easy pattern of solution cost for both solvable

and unsolvable problems, for both problem sizes. The two methods of generating unsolvable
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Figure 2: Median solution cost using dynamic backtracking for solvable (solid lines) and unsolvable
(dashed and dotted lines) problems with number of variables n = 10 (black lines) and
n = 20 (gray lines) as a function of number of nogoods divided by problem size, m=n.
All problems were generated using the \generate-select" method except for the unsolv-
able problems shown by the dotted line, which were generated using the \hill-climbing"
method. For problems of size 10, each point is the median of 1000 problems solved 100
times, except for unsolvable problems generated by \generate-select" at m=n = 3 (30
nogoods) and solvable problems at m=n = 14 (140 nogoods), which are based on 100
problems. For problems of size 20, each point is the median of 500 problems solved 100
times, except for unsolvable problems at m=n = 5 (100 nogoods) and solvable problems
at m=n = 12 (240 nogoods), which are based on 15 and 35 problems, respectively. Error
bars showing 95% con�dence intervals are included, but in most cases are smaller than
the size of the plotted points.

problems give distinct curves: the unsolvable problems generated by the \hill-climbing"

method are harder than those generated by the \generate-select" method. Nonetheless,

both sets of problems show the same easy-hard-easy pattern.

Another example with the same behavior is shown in Figure 3 for the median search

cost for instances of 3-coloring of random graphs. In contrast to Figure 2, the solvable

and unsolvable cases have similar median search costs near the peaks. This is because, as

described above, the graph coloring searches for unsolvable cases used the symmetry with
respect to permutations of the colors to avoid unnecessary search. Without this optimiza-

tion, the costs for unsolvable cases would be six times greater than the values shown in the

�gure. Similar peaks are seen for other classes of graphs, such as connected ones, although

at somewhat di�erent values of .
These data show that both random CSPs and graph coloring problems exhibit an easy-

hard-easy pattern for solvable and unsolvable problems considered separately.
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Figure 3: Median solution cost for 3-coloring random graphs with 100 nodes as a function of connec-
tivity  using backtrack search with the Brelaz heuristic. The solid and dashed curves
correspond to solvable and unsolvable cases respectively. These results started with
100,000 random graphs at each value of , and additional samples were generated at
the extremes to produce at least 100 samples for each point. For random graphs, the
crossover from mostly solvable to mostly unsolvable occurs around a connectivity of 4.5.
Error bars showing 95% con�dence intervals are included.

4.2 Solvable Problems

A peak in search cost for solvable problems such as we observed has also been seen ex-

tensively in studies of local-repair search methods and for problems generated with a pre-

speci�ed solution (Yugami, Ohta, & Hara, 1994; Kask & Dechter, 1995; Williams & Hogg,

1994). These search methods start with some assignment to all of the variables in the

problem and then attempt to adjust them until a solution is found. Generally, such meth-

ods are not systematic searches: they can never determine that a problem has no solution.

Thus empirical studies of these methods are restricted to consider solvable problems and

incidentally provide a useful examination of the properties of solvable problems.

Furthermore, a study of satis�ability problems with backtracking search is consistent
with a peak in cost for solvable problems (Mitchell et al., 1992), but there were insu�cient

highly constrained solvable problems to make a de�nite conclusion for the behavior with

many constraints.

How does the existence of a peak for solvable problems �t with the explanation given

above? Certainly an explanation based on a transition from solvable to unsolvable problems

cannot apply directly to the class of solvable problems. However, the competition between

increased pruning and decreased number of solutions still applies. As shown in Figure 4,

the number of solutions for solvable random CSPs of size 10 at �rst decreases rapidly as

constraints are added but then nears its minimum value of one, giving a slower decrease.
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Figure 4: Mean (solid) and median (dashed) number of solutions on a log scale as a function of the
number of binary nogoods, for solvable problems with 10 variables, 3 values each, based
on 1000 problems generated by the \generate-select" method at each multiple of 10 binary
nogoods, except for 140 nogoods, which is based on 100 problems. At 0 nogoods there
are 310 = 59049 solutions. Error bars showing 95% con�dence intervals are included.

Except for the change in minimum value from 0 to 1 solution, this behavior for the number

of solutions is qualitatively similar to that for the general case including both solvable

and unsolvable problems. The additional constraints continue to increase the pruning of

unproductive search paths. Thus the explanation given above might continue to apply but

now predicts the peak will be at the point where solutions can drop no further (i.e., one

solution) rather than becoming unsolvable (i.e., zero solutions).

Figure 5 evaluates this idea. This �gure shows how the fraction of problems with at
least two solutions changes as a function of the number of nogoods divided by the problem

size for random CSPs with 10 and 20 variables. For problems of size 10, the second to

last solution disappears, on average, between 90 and 100 nogoods: the median number

of solutions has dropped to 2 by 90 nogoods, and to 1 by 100 nogoods (Figure 4). The

peak in solution cost for solvable problems is slightly lower than this, at between 80 and

90 nogoods, close to the crossover point of Figure 5 where half the solvable problems have

only one solution. This is perhaps close enough to be consistent with the explanation given

above. However, this relationship does not hold for problems of size 20. For this class of

problems, the cost peak of solvable problems is at around 180 nogoods (m=n = 9), whereas

the point at which half the problems have just one solution has still not been reached by

240 nogoods (m=n = 12). At 180 nogoods, the median number of solutions is 4 (mean is
10.0), and at 240 nogoods, the median is still 2 (mean is 1.83). This is inconsistent with

the explanation that the cost peak for solvable problems is due to the increasing e�ect of

pruning given no possible further decrease in number of solutions.
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Figure 5: Fraction of problems with at least two solutions as a function of number of nogoods di-
vided by problem size, for problems of size 10 (black line) and size 20 (gray line). Data for
problems of size 10 are based on 1000 solvable problems created by the \generate-select"
method at each point, except for 100 solvable problems at m=n = 14 (140 nogoods).
Data for problems of size 20 are based on 500 solvable problems at each point, except for
20 solvable problems at m=n = 12 (240 nogoods), also created by the \generate-select"
method. Error bars showing 95% con�dence intervals are included.

Since the explanation depending on a change to insolubility does not apply, and the

pruning versus number of solutions explanation does not �t the data, some other factors

must be at work to produce the easy-hard-easy pattern for solvable problems. We sus-

pect the explanation is related to the idea of minimal unsolvable subproblems. A minimal

unsolvable subproblem is a subproblem that is unsolvable, but for which any subset of vari-

ables and their associated constraints is solvable; Gent & Walsh (1996) have referred to

this aspect of SAT problems as the minimal unsatis�able subset. The idea is that once a

few bad choices have been made initially, such that the remainder of the problem becomes

unsolvable, unsolvability is much harder to determine for some problems than for others.

In particular, the more variables that are involved in a minimal unsolvable subproblem,
the harder it is to determine that the subproblem is unsolvable. We make the conjecture

that the cost peak for solvable problems is tied to the average size of the minimal unsolv-

able subproblem once a choice has been made that results in the remaining problem being

unsolvable.

4.3 Problems With a Fixed Number of Solutions

A more interesting case is the behavior of the problems with no solutions shown in Figures

2 and 3. As a further example, Figure 6 shows the solution cost for problems with exactly

one solution. This also shows a peak. These observations on problems with zero or one
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Figure 6: Median solution cost as a function of number of nogoods for problems of 10 variables,
3 values each, with exactly one solution, generated using the \generate-select" method
(solid line), and by hill-climbing down to one solution starting from solvable problems
with many solutions produced using \generate-select" (dotted line), solved using dynamic
backtracking. Each point is the median of 1000 problems each solved 100 times, except
for hill-climbing generated problems at 25, 30 and 35 nogoods and \generate-select"
generated problems at 140 nogoods, of which there are 100. Error bars showing 95%
con�dence intervals are included.

solution show that even with the number of solutions held constant, problems exhibit an

easy-hard-easy pattern of solution cost.

According to the explanation of the transition, if the number of solutions is held constant

then the increase in pruning will be the only factor, giving rise to a monotonic decrease
in search cost as constraints are added. Instead, we see in Figures 2, 3 and 6 that even

when the number of solutions is held �xed at zero or one, there is still a peak in solution

cost, and at a smaller number of nogoods. Thus the existing explanation does not capture

the full range of behaviors. Instead, it appears that there are other factors at work in

producing hard problems. By focusing more closely on these factors we can hope to gain

a better understanding of the structure of hard problems, which may lead to more precise

predictions of search cost.

We also investigated the e�ect of algorithm on the pattern of solution cost in unsolvable

problems by repeating the search of random CSPs using chronological backtrack. A com-

parison of chronological backtracking search with our previous dynamic backtrack search

results for unsolvable problems is shown in Figure 7. In this �gure, the curves for dy-
namic backtracking are the same as those for the unsolvable problems shown in Figure 2,

except that here the cost curves are shown on a logarithmic scale. Interestingly, we do not

see a peak in search cost for unsolvable problems using the less sophisticated method of

chronological backtrack.
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Figure 7: Comparison of median solution cost on a log scale using the same sets of unsolvable
problems for chronological backtracking (black) and dynamic backtracking (gray). Dotted
lines are for problems generated using the \hill-climbing" method, solid lines for the
\generate-select" method. Each point is the median of 1000 problems each solved 100
times, except for the \generate-select" method at 30 nogoods, which is based on 100
problems. Error bars showing 95% con�dence intervals are included, but are smaller
than the size of the plotted points.

This observation raises an important point: the easy-hard-easy pattern is not a universal

feature of search algorithms for problems restricted to a �xed number of solutions. This

suggests that the competition between number of solutions and pruning, when it occurs,

is su�ciently powerful to a�ect most search algorithms (very simple methods, such as

generate-and-test, do not make use of pruning and show a monotonic increase in search

cost as the number of solutions decreases), but that only some algorithms are able to

exploit the features of weakly constrained problems with a �xed number of solutions that

make them easy.

In contrast to our observations, a monotonic decrease in cost has been reported for

unsolvable binary random constraint problems (Smith & Dyer, 1996) and for unsolvable
3SAT problems (Mitchell et al., 1992). In the case of 3SAT, the explanation may well be

choice of algorithm. Indeed, Bayardo & Schrag (1996) recently found that incorporating

conict-directed backjumping and learning into the Tableau algorithm made a di�erence of

many orders of magnitude in problem di�culty speci�cally for rare, \exceptionally hard,"

unsatis�able problems in the underconstrained region. It would be interesting to see whether

the easy-hard-easy pattern for unsolvable problems would appear using their algorithm.

With respect to Smith & Dyer's (1996) observations, the di�erence may be due to the

range of problems generated, resulting from di�erent problem generation methods. Smith

and Dyer used a method akin to our \random" generation method, that is, generating
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problems without regard for solvability, then separating out the unsolvable ones. With this
method, the \hit rate" for unsolvable problems in the underconstrained region is very low.

It is possible that Smith and Dyer's data do not extend down to the point at which the cost

of unsolvable problems begins to decrease simply because they stopped �nding unsolvable

problems before that point.

There are two possible reasons why we might have found unsolvable problems using

random generation further into the underconstrained region, where Smith and Dyer did

not. One possibility is that since we were speci�cally interested in unsolvable problems as

far into the underconstrained region as possible, we may have spent more computational

e�ort generating in that region. Indeed, at 40 nogoods, unsolvable problems occurred with

frequency 4:5�10�5, and at 30 nogoods, with frequency 7:75�10�7. At that rate, problems
at 30 nogoods took about six hours apiece to generate.

A second possibility relates to the details of the generation methods. In Smith and

Dyer's random generation method, every pair of variables had exactly the same number

of inconsistent value pairs between them. This implies a degree of homogeneity in the

distribution of the nogoods. On the other hand, in our random generation method, each

variable-value pair had an equal probability of being selected as a nogood, independent of

one another. Thus it was at least possible in our generation method, though still of low

likelihood, for the nogoods to occasionally clump, and to produce an unsolvable problem.

This idea is discussed further in Section 5.

The di�erence in our observation and Smith & Dyer's (1996) reinforces an important

point: that a relatively subtle di�erence in generation methods can a�ect the class of

problems generated. While the nogoods will be more or less evenly distributed on average
using our generation method, they will also be clumped with some probability, whereas

with Smith and Dyer's generation method, a homogeneous distribution over variable pairs

is guaranteed. These types of problems could be di�erent enough to sometimes produce

di�erent behavior.

5. Minimal Unsolvable Subproblems

Our observations on classes of problems with restrictions on the number of solutions they

may have shows that the common identi�cation of the peak in solution cost with the

algorithm-independent transition in solvability seen in general problem classes does not

capture the full generality of the easy-hard-easy pattern.

For solvable problems, this explanation could be readily modi�ed to use a transition

in the existence of solutions beyond those speci�ed by the construction of the class of

problems and symmetries those problems might have that constrain the allowable range of

solutions. This modi�cation is a simple generalization of the existing explanation based

on the competition between the number of solutions and pruning. However, our data

for solvable problems do not support this explanation, in that the search cost peak and
disappearance of the second to last solution coincide only roughly for n = 10, and not at

all for n = 20.

Furthermore, when the number of solutions is held constant, competition between in-

creased pruning and decreasing number of solutions cannot possibly be responsible for a

peak in solution cost. The decrease in search cost for highly constrained problems (to
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the right of the peak) is adequately explained by the prevailing explanation, based on the
increase in pruning with additional constraints. But this does not explain why weakly con-

strained problems are also found to be easy, at least for some search methods. The low cost

of unsolvable problems in the underconstrained region is a new and unexpected observation

in light of previous studies of the easy-hard-easy pattern and its explanation. This raises

the question of whether there is a di�erent aspect of problem structure that can account

for the peak in search cost for problems with a �xed number of solutions.

One possibility that is often mentioned in this context is the notion of critically con-

strained problems. These are problems just on the boundary between solvable and un-

solvable problems, i.e., neither underconstrained (with many solutions) nor overconstrained

(with none). This notion forms the basis for another common interpretation of the cost

peak. That is, these critically constrained problems will typically be hard to search (be-
cause most of the constraints must be instantiated before any unproductive search paths

can be identi�ed) and, since they are concentrated at the transition (Smith & Dyer, 1996),

give rise to the search peak. This explanation does not include any discussion of the changes

in pruning capability as constraints are added. Taken at face value, this explanation would

predict no peak at all for solvable problems or when the number of solutions is held constant,

because such classes have no transition from solvable to unsolvable problems. Moreover,

this description of critically constrained problems is not simply a characteristic of an indi-

vidual problem but rather is partly dependent on the class of problems under consideration

because the exact location of the transition depends on the method by which problems

are generated. This observation makes it di�cult to characterize the degree to which an

individual problem is critically constrained purely in terms of structural characteristics of
that problem. By contrast, a measure such as the number of solutions is well de�ned for

individual problem instances, which facilitates using its average behavior for various classes

of problems to approximately locate the transition region. Thus, as currently described,

the notion of critically constrained problems does not explain our observations nor does it

give an explicit way to characterize individual problems.

A more precisely de�ned alternative characteristic is the size of minimal unsolvable sub-

problems. As we mentioned in Section 4.2, a minimal unsolvable subproblem is a subproblem

that is unsolvable, but for which any subset of variables and their associated constraints is

solvable.

Some problems have more than one minimal unsolvable subproblem. For example, a

problem might have one minimal unsolvable subproblem of �ve variables, and another, dif-
ferent one, of say, six. We computed all minimal unsatis�able subproblems for all of the

10-variable unsolvable problems we had generated. We found a monotonic positive relation-

ship between mean number of minimal unsolvable subproblems and number of nogoods. For

example, problems with 140 nogoods have an average of 35 minimal unsolvable subproblems

(range 4 to 64, standard deviation 8.7); those with 90 nogoods have about six (range 1 to

23, standard deviation 3.6); and problems with 50 or fewer nogoods rarely have more than

one minimal unsolvable subproblem. Similarly, Gent & Walsh (1996) observed that un-

satis�able problems in the underconstrained region tend to have small and unique minimal

unsatis�able subsets.

The behavior of the size of the smallest minimal unsolvable subproblem as a function of

the number of nogoods is shown in Figure 8. Comparing with Figure 2, we see that the peak
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Figure 8: Mean size of smallest minimal unsolvable subproblem as a function of number of no-
goods, for unsolvable problems generated using the \hill-climbing" (dotted line) and
\generate-select" (solid line) methods. Each point is based on 1000 problems, except for
the \generate-select" method at 30 nogoods, which is based on 100 problems. Error bars
showing 95% con�dence intervals are included.

in the minimum size of minimal unsolvable subproblems matches the location of the search

cost peak for unsolvable problems. This result is independent of whether we plot the smallest

minimal unsolvable subproblem size, as shown in Figure 8, or medians or means, which we

have not shown here. Moreover, the location of the peaks in minimal unsolvable subproblem

size for the di�erent generation methods correspond to the location of their respective

search cost peaks. The peak in both search cost and minimal unsolvable subproblem size

occurs at around 40 nogoods for problems generated using the \hill-climbing" method,
and signi�cantly higher, around 60 nogoods, for problems generated using the \generate-

select" method. The strong correspondence between minimal unsolvable subproblem size

and search cost is very suggestive that minimal unsolvable subproblem size is a structural

characteristic of problems that plays an important role in search cost. By contrast, number

of minimal unsolvable subproblems does not match the pattern of search cost. As mentioned

above, it increases monotonically with number of nogoods, suggesting that it does not play

a primary role in explaining search cost for unsolvable problems.

The behavior of the minimal unsolvable subproblem size as a function of the number

of constraints has a simple explanation. Unsolvable weakly constrained problems will gen-

erally need to concentrate most of the available constraints on a few variables in order to

make all assignments inconsistent. This will tend to give one small minimal unsolvable
subproblem. As more constraints are added, this concentration is no longer required and,

since problems where most of the randomly selected constraints happen to be concentrated

on a few variables are rare, we can expect more and larger minimal unsolvable subproblems.
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Figure 9: Mean solution cost as a function of size of smallest minimal unsolvable subproblem, for
unsolvable problems with 60 nogoods generated using the \generate-select" method. Each
point is the mean of the median solution costs, based on solving each problem 100 times,
for the set of problems with the corresponding smallest minimal unsolvable subproblem
size. The points are based on following numbers of problems for each smallest minimal
unsolvable subproblem size, totaling 1000 problems: 3 { 1; 4 { 17; 5 { 71; 6 { 156; 7 {
253; 8 { 283; 9 { 165; 10 { 54. Error bars showing 95% con�dence intervals are included,
except for the single problem at size 3 for which con�dence intervals cannot be calculated.

Finally, as more and more constraints are added, the increased pruning is equivalent to the

notion that instantiating only a few variables is all that is required to �nd an inconsistency.

This means we can expect a large number of small unsolvable subproblems. This qualitative

description corresponds to what we observe in Figure 8.

Our observations of weakly constrained problems suggest that some search algorithms,

such as dynamic backtracking, are able to rapidly focus in on one of the unsolvable subprob-
lems and hence avoid the extensive thrashing, and high search cost, seen in other methods.

In such cases, one would expect that the smaller the unsolvable subproblem, the easier it

will be for the search to determine there are no solutions.

In order to examine the role of minimal unsolvable subproblem in search cost more

closely, we plotted mean search cost versus size of smallest minimal unsolvable subproblem

for unsolvable problems of 10 variables at each multiple of 10 nogoods from 30 to 140

nogoods. In every case, mean search cost increased as a function of size of smallest minimal

unsolvable subproblem. Figure 9 shows an example of one of these plots, at the peak

in solution cost for this class of problems, 60 nogoods. It makes sense that the smallest

minimal unsolvable subproblem, being the easiest to detect, would play a signi�cant role

in search cost. However, the situation is surely more complicated than this, suggested by
the fact that there is still variation among problems with the same size smallest minimal
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unsolvable subproblem. This could be due, for example, to one problem having several
small minimal unsolvable subproblems, while another might have one minimal unsolvable

subproblem, even smaller. Number and size of minimal unsolvable subproblems are both

likely to play a role in search cost.

Number of minimal unsolvable subproblems does not seem to play as signi�cant a role

as size of smallest minimal unsolvable subproblem, but its e�ect can also be demonstrated.

For the same sets of unsolvable problems as above, for each multiple of 10 nogoods from

80 to 140 nogoods, search cost correlates negatively with number of minimal unsolvable

subproblems. However, for unsolvable problems with 30 to 70 nogoods, where variance in

number of minimal unsolvable subproblems is lower (but variance in search cost is higher),

there is no relationship between search cost and number of minimal unsolvable subprob-

lems. Additional clari�cation of the role in search cost of both size and number of minimal
unsolvable subproblems is left for further investigation. But size of smallest minimal un-

solvable subproblem, which correlates strongly with search cost for (1) unsolvable problems

taken as a whole (see Figures 2 and 8) and (2) unsolvable problems with a �xed number of

nogoods over the full range of number of nogoods, appears to have the more primary e�ect.

This discussion of minimal unsolvable subproblems is also relevant to solvable problems:

once a series of choices that precludes a solution is made during search, the remaining sub-

problem is now an unsolvable one. For example, in a 10-variable CSP, suppose values are

given to the �rst two variables that are incompatible with all solutions to the problem. This

means that in the context of these two assignments, the remaining eight variables consti-

tute an unsolvable subproblem. The number of search steps required to determine that this

subproblem is in fact unsolvable will be the cost added to the search before backtracking to
the original two variables and trying a new assignment for one of them. Thus, the cost of

identifying unproductive search choices for solvable problems is determined by how rapidly

the associated unsolvable subproblem can be searched. As described above, when there are

few constraints we can expect that such unsolvable subproblems will themselves have small

minimal unsolvable subproblems and hence be easy to search with methods that are able

to focus on such subproblems. While the unsolvable subproblems associated with incorrect

variable choices in solvable problems may have a di�erent structure, this argument sug-

gests that changes in minimal unsolvable subproblems may explain the behavior of solvable

problems with a �xed number of solutions as well. This could also explain observations of

thrashing behavior for rare exceptionally hard solvable problems in the underconstrained

region (Gent & Walsh, 1994a; Hogg & Williams, 1994); we would expect such problems
to have a relatively large unsolvable subproblem to detect given the initial variable assign-

ments. Finally, it would be interesting to study the behavior of local repair search methods

for problems with a single solution to see if they also are a�ected by the change in minimal

subproblem size.

6. Conclusions

We have presented evidence that the explanation of the easy-hard-easy pattern in solution

cost based on a competition between changes in the number of solutions and pruning is

insu�cient to explain the phenomenon completely for sophisticated search methods. It

does explain the overall pattern for problems not restricted by solvability or number of
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solutions. However, the explanation fails when the number of solutions is held constant
and sophisticated search methods are used. In these cases the solution cost peak does not

disappear as would be predicted. Alternatively, we can view this explanation as adequate for

less sophisticated methods that are not able to readily focus in on unsolvable subproblems

encountered during the search.

By considering relatively small search problems, we are able to exhaustively examine

the properties of the search space. This allowed us to de�nitively demonstrate the impor-

tance for search behavior of an aspect of problem structure: the size of minimal unsolvable

subproblems. Our approach contrasts with much work in this area that involves solving

problems as large as feasible within reasonable time bounds. While the latter approach

gives a better indication of the asymptotic behavior of the transition, it is not suitable

for exhaustive evaluation of the nature of the search spaces encountered, nor for detailed
analysis of aspects of individual problem structure.

We believe that detailed examination of the structure of combinatorial problems can

yield information about why certain types of problems are di�cult or easy. As a class, graph

coloring or random CSPs are NP-complete, yet in practice many such problems are actually

very easy. In addition, while theoretical work in this area has produced predictions that are

asymptotically correct on average, the variance among individual problems in a predicted

class is enormous. Increased understanding of the relationships between problem structure,

problem solving algorithm, and solution cost is important to determining whether, and if so,

how, we can determine prior to problem solving which problems are easy versus infeasibly

hard. In contrast to previous theoretical studies that focus on the number of solutions, this

work suggests that the size of minimal unsolvable subproblems is an alternate characteristic
to study with the potential for producing a more precise characterization of the transition

behavior and the nature of hard search problems.
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