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Abstract

A fundamental goal of research in molecular biology is to understand protein structure.
Protein crystallography is currently the most successful method for determining the three-
dimensional (3D) conformation of a protein, yet it remains labor intensive and relies on an
expert's ability to derive and evaluate a protein scene model. In this paper, the problem
of protein structure determination is formulated as an exercise in scene analysis. A com-
putational methodology is presented in which a 3D image of a protein is segmented into a
graph of critical points. Bayesian and certainty factor approaches are described and used
to analyze critical point graphs and identify meaningful substructures, such as �-helices
and �-sheets. Results of applying the methodologies to protein images at low and medium
resolution are reported. The research is related to approaches to representation, segmen-
tation and classi�cation in vision, as well as to top-down approaches to protein structure
prediction.

1. Introduction

Crystallography plays a major role in current e�orts to characterize and understand molec-
ular structures and molecular recognition processes. The information derived from crystal-
lographic studies provides a precise and detailed depiction of a molecular scene, an essential
starting point for unraveling the complex rules of structural organization and molecular
interactions in biological systems. However, only a small fraction of the currently known
proteins have been fully characterized.

The determination of molecular structures from X-ray di�raction data belongs to the
general class of image reconstruction exercises from incomplete and/or noisy data. Research
in arti�cial intelligence and machine vision has long been concerned with such problems.
Similar to the concept of visual scene analysis, molecular scene analysis is concerned with
the processes of reconstruction, classi�cation and understanding of complex images. Such
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analyses rely on the ability to segment a representation of a molecule into its meaningful
parts, and on the availability of a priori information, in the form of rules or structural
templates, for interpreting the partitioned image.

A crystal consists of a regular (periodic) 3D arrangement of identical building blocks,
termed the unit cell. A crystal structure is de�ned by the disposition of atoms and molecules
within this fundamental repeating unit. A given structure can be solved by interpreting an
electron density image of its unit cell content, generated { using a Fourier transform { from
the amplitudes and phases of experimentally derived di�raction data. An electron density
map is a 3D array of real values that estimate the electron density at given locations in the
unit cell; this information gives access to the structure of a protein1. Unfortunately, only
the di�raction amplitudes can be measured directly from a crystallographic experiment; the
necessary phase information for constructing the electron density image must be obtained
by other means2. This is the classic phase problem of crystallography.

In contrast to small molecules (up to 150 or so independent, non-hydrogen atoms), the
determination of protein structures (which often contain in excess of 3000 atoms) remains a
complex task hindered by the phase problem. The initial electron density images obtained
from crystallographic data for these macromolecules are typically incomplete and noisy. The
interpretation of a protein image generally involves mental pattern recognition procedures
where the image is segmented into features, which are then compared with anticipated
structural motifs. Once a feature is identi�ed, this partial structure information can be
used to improve the phase estimates resulting in a re�ned (and eventually higher-resolution)
image of the molecule. Despite recent advances in tools for molecular graphics and modeling,
this iterative approach to image reconstruction is still a time consuming process requiring
substantial expert intervention. In particular, it depends on an individual's recall of existing
structural patterns and on their ability to recognize the presence of these motifs in a noisy
and complex 3D image representation.

The goal of the research described in this paper is to facilitate the image reconstruc-
tion processes for protein crystals. Towards this goal, techniques from arti�cial intelligence,
machine vision and crystallography are integrated in a computational approach for the in-
terpretation of protein images. Crucial to this process is the ability to locate and identify
meaningful features of a protein structure at multiple levels of resolution. This requires a
simpli�ed representation of a protein structure, one that preserves relevant shape, connec-
tivity and distance information. In the proposed approach, molecular scenes are represented
as 3D annotated graphs, which correspond to a trace of the main and side chains of the
protein structure. The methodology has been applied to ideal and experimental electron
density maps at medium resolution. For such images, the nodes of the graph correspond
to amino acid residues and the edges correspond to bond interactions. Initial experiments
using low-resolution electron density maps demonstrate that the image can be segmented
into protein and solvent regions. At medium resolution the protein region can be further
segmented into main and side chains and into individual residues along the main chain.

1. Strictly speaking, the di�raction experiment provides information on the ensemble average over all of
the unit cells.

2. Current solutions to the phase problem for macromolecules rely on gathering extensive experimental
data and on considerable input from experts during the image interpretation process.
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Furthermore, the derived graph representation of the protein can be analyzed to determine
secondary structure motifs within the protein.

The paper presents a brief overview of protein structure and the problem of analyzing
a molecular scene. The processes of protein segmentation and secondary structure identi�-
cation are described, along with experimental results. Related and ongoing research issues
are also presented.

2. Protein Structure

A fundamental goal of research in molecular biology is to understand protein structure and
function. In particular, structure information is essential for medicine and drug design. In
this section we review some of the concepts involved in protein structure. These concepts will
be used later in describing our computational approach to protein structure determination.

A protein is often characterized as a linear list of amino acids called the primary struc-

ture, or sequence, for the protein. All of the naturally occurring amino acids have a similar
backbone structure, consisting of a central carbon atom (C�), an amino group (NH2) and
a carboxyl group (COOH). They are distinguished from one another by their varying side
chains that are connected to the C� atom. Figure 1 illustrates alternative representations
for the amino acid alanine, where Figure 1(c) displays its side chain consisting of a carbon
and three hydrogen atoms. Associated with the side chain of an amino acid are properties
such as hydrophobicity (dislikes water), polarity, size and charge.

C  H  NO
73 2

COOH  N

CH 3

3

H

-+
C

(a)  1D chemical formula (b) 2D structural formula (c) Ball and stick model
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Figure 1: Representations of the amino acid alanine.

Adjacent amino acids in the primary structure for a protein are linked together by
peptide bonds to form a polypeptide main chain, or backbone, from which the various side
chains project (see Figure 2). The carboxyl group of one amino acid joins with the amino
group of another to eliminate a water molecule (H2O) and form the peptide bond.

A secondary structure of a protein refers to a local arrangement of a polypeptide subchain
that takes on a regular 3D conformation. There are two commonly recurring classes of
secondary structure: the �-helix and the �-sheet. An �-helix occurs as a corkscrew-shaped
conformation, where amino acids are packed tightly together; �-sheets consist of linear
strands (termed �-strands) of amino acids running parallel or antiparallel to one another
(see Figure 3). These secondary structure motifs are generally linked together by less
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Figure 2: Proteins are built by joining together amino acids using peptide bonds.

regular structures, termed loops or turns. As will be discussed later in the paper, the
characterization of a subsequence of amino acids as an �-helix or �-sheet can be determined
by a geometric analysis of the distance and angle relations among local subsequences of
amino acids.

The global conformation of a protein is referred to as its tertiary structure. The way in
which proteins adopt a particular folding pattern depends upon the intramolecular interac-
tions that occur among the various amino acid residues, as well as upon the interaction of
the molecule with solvent (water). Two types of intramolecular interactions are often re-
ferred to in order to describe the secondary or tertiary structure of a protein. The �rst type
is a hydrogen bond, which results from the sharing of a hydrogen atom between residues.
�-helices and �-sheets can both be described in terms of regular and speci�c hydrogen bond
networks. Figure 3 illustrates a portion of a �-sheet in which hydrogen bond interactions
link together parallel �-strands. Additional stability to the 3D structure of a protein is
provided by disul�de bridges. This second type of interaction is a result of a chemical bond
occurring between two sulfur atoms carried by cysteine amino acid residues. These bonds
are energetically stronger than hydrogen bonds and contribute to stability under extreme
conditions (temperature, acidity, etc.).

Molecular biology is concerned with understanding the biological processes of macro-
molecules in terms of their chemical structure and physical properties. Crucial to achieving
this goal is the ability to determine how a protein folds into a 3D structure given its known
sequence of amino acids. Despite recent e�orts to predict the 3D structure of a protein from
its sequence, the folding problem remains a fundamental challenge for modern science. Since
the 3D structure of a protein cannot as yet be predicted from sequence information alone,
the experimental techniques of X-ray crystallography and nuclear magnetic resonance cur-
rently provide the only realistic routes for structure determination. In the remainder of the
paper we focus on a computational approach for the analysis of protein images generated
from crystallographic data.
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Figure 3: Hydrogen bonds (dotted lines) link three individual �-strands (linear sequences
of amino acids in the main chain of the protein) to form a parallel �-sheet.
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3. Scene Analysis

Research in machine vision has long been concerned with the problems involved in auto-
matic image interpretation. Marr (1982) de�nes computational vision as \the process of
discovering what is present in the world, and where it is". Similar to visual scene analy-
sis, molecular scene analysis is concerned with the processes of reconstruction, classi�cation
and understanding of complex images. This section presents the problem of molecular scene
analysis in the context of related research in machine vision and medical imaging.

Early vision systems generally include a set of processes that determine physical prop-
erties of 3D surfaces from 2D arrays. These input arrays contain pixel values that denote
properties such as light intensity. Considerable research has been carried out on extracting
3D information from one or more 2D images. A review of the application of stereo vision
to sets of 2D images can be found in (Faugeras, 1993). The principles of stereo vision
have also been applied to moving images (Zhang & Faugeras, 1992). Range data provides
explicit depth information about visible surfaces in the form of a 2D array (depth map).
Depending on the application, both surface or/and volume �tting techniques are applied
to these images. A more complete review of vision techniques can be found elsewhere (e.g.,
(Arman & Aggarwal, 1993; Besl & Jain, 1986; Jain & Flynn, 1993)).

Similar to the crystallography problem, medical imaging techniques require genuine
3D data: magnetic resonance imaging (MRI) provides detailed high-resolution information
about tissue density; emission computed tomography (ECT), which includes positron emis-
sion tomography (PET) and single photon emission computed tomography (SPECT), gives
noisy, low-resolution information about metabolic activity. X-ray computed tomography
(CT) and ultrasound also provide 3D density data. These methods can be used to obtain a
series of 2D images (slices) which, when properly aligned, provide a 3D grid. Because the
interslice spacing may be much larger than the spacing between grid points in each slice,
alignment of the slices followed by interpolation between the slices is one area of research.

The low-level segmentation of medical images typically uses 3D extensions of 2D tech-
niques. Edge detection becomes surface detection, region growing de�nes volumes instead
of areas. Many applications typically do not require detailed, high-level models. Surface
information can be used to construct models for simulations, volumes and surfaces provide
structural measurements. Higher-level models are used in the construction of \templates"
for pattern matching. One interesting aspect of medical imaging is the availability of a priori
knowledge, either from a database of similar structures, or from images of the same region
in di�erent modalities (e.g. MRI images of a brain can be used to guide segmentation of a
lower-resolution PET image). One modality may also provide information that is not clear
in another modality. There is considerable research on \registration" of images { aligning
or overlaying two 3D images to combine information. Segmentation and identi�cation of
matching \landmarks" is important for such image representations.

Unlike input for the vision and medical imaging problems, the crystallographic experi-
ment yields data that de�ne a 3D function, which allows for the construction of a 3D array
of voxels of arbitrary size3. An interpretation of the 3D atomic arrangement in a crys-
tal structure is readily available for small molecules using the data generated from X-ray

3. Comparatively, machine vision techniques generally provide 2D image representations and range data
only provide surface information. Medical imaging techniques may result in a 3D grid, but the spacing
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di�raction techniques. Given the magnitudes of the di�racted waves and prior knowledge
about the physical behavior of electron density distributions, probability theory can be ap-
plied to retrieve phase information. Once magnitudes and phases are known, the spatial
arrangement of atoms within the crystal can be obtained by a Fourier transform. The elec-
tron density function that is obtained, �(x; y; z), is a scalar �eld visualized as a 3D grid of
real values called the electron density map. High-density points in this image are associated
with the atoms in the small molecule.

The construction of an interpretable 3D image for a protein structure from di�raction
data is signi�cantly more complex than for small molecules, primarily due to the nature of
the phase problem. It generally involves many iterations of calculation, map interpretation
and model building. It also relies extensively on input from an expert crystallographer.
We have previously proposed that this process could be enhanced through a strategy that
integrates research in crystallography and arti�cial intelligence and rephrases the problem
as a hierarchical and iterative scene analysis exercise (Fortier et al., 1993; Glasgow et al.,
1993). The goal of such an exercise is to reconstruct and interpret images of a protein
at progressively higher resolution. For an initial low-resolution map, where the protein
appears as a simple object outlined by its molecular envelope, the goal is to locate and
identify protein and solvent regions. At medium-resolution, the goal involves locating amino
acid residues along the main chain and identifying secondary structure motifs. At higher
resolution, the analysis would attend to the identi�cation of residues and, possibly, the
location of individual atoms.

A primary step in any scene analysis (whether vision, medical or crystallographic data
are used) is to automatically partition an image representation into disjoint regions. Ideally,
each segmented region corresponds to a semantically meaningful component or object in the
scene. These parts can then be used as input to a high-level classi�cation task. The processes
of segmentation and classi�cation may be interwoven; domain knowledge, in the form of a
partial interpretation, is often useful for assessing and guiding further segmentation.

Several approaches to image segmentation and classi�cation have been considered in the
vision literature. Of particular interest for the molecular domain is an approach described
by Besl and Jain (1986) , where the surface curvature and sign of a Gaussian is derived for
each point on the surface of a range image. Image segmentation is then achieved through
the identi�cation of primitive critical points (peaks, pits, ridges, etc.). Haralick et al. (1983)
de�ned a similar set of topographic features for use in 2D image analysis, Wang and Pavlidis
(1993), and later Lee and Kim (1995), extended this work to extract features for character
recognition. Gauch and Pizer (1993) also identify ridge and valley bottoms in 2D images,
where a ridge is de�ned as a point where the intensity falls o� sharply in two directions
and a valley bottom is a point where the intensity increases sharply in two directions. They
further examined the behavior of the ridges and valleys through scale space; the resulting
resolution hierarchies could be used to guide segmentation. Maintz et al. (1996) and Guziec
and Ayache (1992) use 3D di�erential operators through scale space to de�ne ridges and
troughs. These provide landmarks which can be used to register images. Leonardis, Gupta
and Bajcsy (1993, 1995)) use an approach where surface �tting (using iterative regression)
and volume �tting (model recovery) are initiated independently; the local-to-global surface

along the third axis may be large, and, in such a case, it is necessary to align and interpolate over
multiple 2D slices.
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�tting is used to guide multiple global-to-local volume �ttings, and is used in the evaluation
of possible models.

As will be discussed in the next section, a topological approach is being used for the
segmentation and classi�cation of molecular scenes. Similar to the method of Gauch and
Pizer, critical points are used to delineate a skeletal image of a protein and segment it into
meaningful parts. These critical points are considered in the analysis of the segmented
parts. This approach can also be compared to a skeletonization method, which has been
described by Hilditch (1969) and applied in protein crystallography by Greer (1974) . Unlike
Greer's algorithm, which \thins" an electron density map to form a skeleton that traces
the main and secondary chains of the molecule, our proposed representation preserves the
original volumetric shape information by retaining the curvatures of electron density at the
critical points. Furthermore, rather than thinning electron density to form a skeleton, our
approach reconstructs the backbone of a protein by connecting critical points into a 3D
graph structure.

Critical points in an image have also been considered in the medical domain. Higgins et
al. (1996) analyze coronary angiograms from CT data by thresholding to de�ne \bright"
regions that correspond to the area around peak critical points. These seed regions are then
grown along ridges until there is a steep dropo�. Post-processing removes cavities and spurs.
The resulting volume is a tree-like structure, which is then skeletonized and further pruned
to provide axes. The axes are converted to sets of line segments with some minimum length.
This is similar to BONES (Jones, Zou, Cowan, & Kjeldgaard, 1991), a graphical method
which has been developed and applied to the interpretation of medium- to high-resolution
protein maps. This method incorporates a thinning algorithm and postprocessing analysis
for electron density maps. Also worth mentioning is a previously described methodology
for outlining the envelope of a protein molecule in its crystallographic environment (Wang,
1985).

A distinct advantage of molecular scene analysis, over many applications in machine
vision, is the regularity of chemical structures and the availability of previously determined
molecules in the Protein Data Bank (PDB) (Bernstein, Koetzle, Williams, & Jr., 1977). This
database of 3D structures forms the basis of a comprehensive knowledge base for template
building and pattern recognition in molecular scene analysis (Conklin, Fortier, & Glasgow,
1993b; Hunter & States, 1991; Unger, Harel, Wherland, & Sussman, 1989); although the
scenes we wish to analyze are novel, their substructures most likely have appeared in pre-
viously determined structures. Another signi�cant di�erence between molecular and visual
scene analysis is that di�raction data resulting from protein experiments yield 3D images,
simplifying or eliminating many of the problems faced in low-level vision (e.g., occlusion,
shading). The complexity that does exist in the crystallographic domain relates to the
incompleteness of data due to the phase problem.

4. Segmentation and Interpretation of Protein Images

The use of arti�cial intelligence techniques to assist in crystal structure determination, par-
ticularly for the interpretation of electron density maps, was �rst envisioned by Feigenbaum,
Engelmore and Johnson (1977) and pursued in the Crysalis project (Terry, 1983). In con-
junction with this earlier project, a topological approach to the representation and analysis
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Figure 4: Depictions of electron density maps viewed at (a) 1 �A, (b) 3 �A, and (c) 5 �A
resolution

of protein electron density maps was implemented in a program called ORCRIT (Johnson,
1977). Recent studies suggest that this approach can also be applied to the segmentation
of medium-resolution protein images (Leherte, Baxter, Glasgow, & Fortier, 1994a; Leherte,
Fortier, Glasgow, & Allen, 1994b). In this section we describe and further support the
feasibility of a topological approach for the analysis of low and medium-resolution electron
density maps of proteins.

The information stored in an electron density map for a protein may be represented
and analyzed at various levels of detail (see Figure 4)4. At high-resolution (Figure 4(a))
individual atoms are observable; at medium-resolution (Figure 4(b)) atoms are not observ-
able, but it is possible to di�erentiate the backbone of the protein from its side chains and
secondary structure motifs may be discernerable. A clear segmentation between the protein
molecular envelope (region in which the atoms of the protein reside) and the surrounding
solvent region can still be seen at low-resolution (Figure 4(c)).

4. Resolution in the electron density images of proteins is often measured in terms of angstrom (�A) units,
where 1 �A=10�10 meters.
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Methods from both machine vision and crystallography were considered in the devel-
opment of our computational approach to the analysis of protein structures. Among those
studied, a topological analysis provided the most natural way to catch the uctuations of
the density function in the molecular image. In this section we overview such a method
for mapping a 3D electron density map onto a graph that traces the backbone of the pro-
tein structure. We present results of applying the method for the segmentation of low and
medium-resolution maps of protein structures reconstructed using the Protein Databank of
Brookhaven. As well, we show how critical point graphs constructed for medium resolution
maps can be further analyzed in order to identify �-helix and �-sheet substructures.

4.1 Representation of Protein Structure

Crucial to a molecular scene analysis is a representation that will capture molecular shape
and structure information at varying levels of resolution; an important step in a molecular
scene analysis is the parsing of a protein, or protein fragments, into shape primitives so as
to allow for their rapid and accurate identi�cation. Shape information can be extracted
from several depictive representations { for example, van der Waals surfaces, electrostatic
potentials or electron density distributions. Since molecular scene analysis is primarily
concerned with images reconstructed from crystallographic experiments, electron density
maps provide a natural and convenient choice for the input representation.

As mentioned earlier, an electron density map is depicted as a 3D array of real, non-
negative values corresponding to approximations of the electron density distribution at
points in the unit cell of a crystal. For the task of segmenting this map into meaningful
parts, we also consider the array in terms of a smooth and continuous function �, which maps
an integer vector r = (x; y; z) to a value corresponding to the electron density at location
r in the electron density map. Similar to related formalisms in vision5, the information
in an electron density map is uninterpreted and at too detailed a level to allow for rapid
computational analysis. Thus, it is essential to transform this array representation into a
simpler form that captures the relevant shape information and discards unnecessary and
distracting details. The desired representation should satisfy the three criteria put forward
by Marr and Nishihara concerning: 1) accessibility { the representation should be derivable
from the initial electron density map at reasonable computing costs; 2) scope and uniqueness
{ the representation should provide a unique description of all possible molecular shapes
at varying levels of resolution; and 3) stability and sensitivity { the representation should
capture the more general (less variant) properties of molecular shapes, along with their �ner
distinctions.

Several models for the representation and segmentation of protein structures were con-
sidered. These included a generalized cylinder model (Binford, 1971), and a skeletonization
method (Greer, 1974; Hilditch, 1969). We choose a topological approach, which has been
previously applied in both chemistry and machine vision. In chemistry, the approach has
proven useful for characterizing the shape properties of the electron density distribution
through the location and attributes of its critical points (points where the gradient of the
electron density is equal to zero) (Johnson, 1977).

5. The level of representation of the electron density map is comparable to a 3D version of the primal sketch
in Marr and Nishihara's formalism (1978) .
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In the following section, we describe the representation of a protein structure in terms
of a set of critical points obtained through a topological analysis.

4.2 Deriving Critical Point Graphs

In the proposed topological approach to protein image interpretation, a protein is segmented
into its meaningful parts through the location and identi�cation of the points in the electron
density map where the gradients vanish (zero-crossings). At such points, local maxima and
minima are de�ned by computing second derivatives which adopt negative or positive values
respectively. The �rst derivatives of the electron density function � characterize the zero-
crossings, and the second derivatives provide information on the zero-crossings; in particular,
they identify the type of critical points for the map. For each index value r = (x; y; z) in
the electron density map, we de�ne a function �(r).

Candidate grid points (those that are a maximum or a minimum along three mutually
orthogonal axes) are chosen and the function �(r) is evaluated in their vicinity by deter-
mining three polynomials (one along each of the axes) using a least square �tting. �(r) is
the tensor product of these three polynomials. The location of a critical point is derived
using the �rst derivative of �(r). The second derivatives are used to determine the nature
of the critical point. For each critical point, we construct a Hessian matrix:

@2�=@x2 @2�=@x@y @2�=@x@z
H(r) = @2�=@y@x @2�=@y2 @2�=@y@z

@2�=@z@x @2�=@z@y @2�=@z2

This matrix is then put in a diagonal form in which three principal second derivatives are
computed for the index value r:

@2�=@(x0)2 0 0
H'(r) = 0 @2�=@(y0)2 0

0 0 @2�=@(z0)2

The three non-zero diagonal elements of array H'(r) { the eigenvalues { are used to de-
termine the type of critical points of the electron density map. Four possible cases are
considered depending upon the number of negative eigenvalues, nE . When nE = 3, the
critical point r corresponds to a local maximum or peak; a point where nE = 2 is a saddle
point or pass. nE = 1 corresponds to a saddle point or pale, while nE=0 characterizes r as
a pit. Figure 5 depicts a 2D graphical projection of potential critical points.

High density peaks and passes are the only critical points currently being considered in
our study. Low density critical points are less signi�cant since they are often indistinguish-
able from noise in experimental data.

The use of the critical point mapping as a method for analyzing protein electron density
maps was �rst proposed by Johnson (1997) for the analysis of medium to high-resolution pro-
tein electron density maps. Within the framework of the molecular scene analysis project,
the use of critical points is being extended for the analysis of medium and low-resolution
maps of proteins. The topological approach to the segmentation of proteins was initially
implemented by Johnson in the computer program ORCRIT (Johnson, 1977). By �rst lo-
cating and then connecting the critical points, this program generates a representation that
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Figure 5: Graphical illustration of critical points in 2D (X and Y) plotted against density
function �.

captures the skeleton and the volumetric features of a protein image. The occurrence prob-
ability of a connection between two critical points i and j is determined by following the
density gradient vector r�(r). For each pair of critical points, the program calculates a
weight wij, which is inversely proportional to the occurrence probability of the connection.
The collection of critical points and their linkage is represented as a set of minimal spanning
trees (connected acyclic graphs of minimal weight)6.

4.3 Results of Segmentation at Medium and Low Resolution

This section presents experimental studies that have been carried out on electron density
maps at 3 �A resolution. Computations were �rst performed on calculated maps recon-
structed from available structural data in order to generate a procedure for the further
analysis of experimental maps. Three protein structures: Phospholipase A2 (1BP2), Ribonu-
clease T1 complex (1RNT) and Trypsin inhibitor (4PTI), retrieved from the PDB (Bernstein
et al., 1977), were considered. These structures are composed of 123, 104 and 53 amino acid
residues, respectively, and were chosen because of the quality of the data sets. The electron
density images for the proteins were constructed using the XTAL program package (Hall &
Stewart, 1990), and were then analyzed using a version of ORCRIT which was extended and
enhanced to construct and interpret critical point graphs for low- and medium-resolution
electron density maps.

Applying ORCRIT to electron density maps generated at medium resolution provides
for a detailed analysis of the protein structures (Leherte et al., 1994b). As illustrated in
Figure 6, the topological approach produces a skeleton of a protein backbone as a sequence

6. As will be discussed in Section 4, this part of the program is currently being modi�ed to allow for cycles
in the graph.
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of alternating peaks (dark circles) and passes (light circles). The results obtained from
the analysis of calculated electron density maps at 3 �A resolution led to the following
observations:

� A peak in the linear sequence is generally associated with a single residue of the
primary sequence for the protein.

� A pass in the sequence generally corresponds to a bond or chemical interaction that
links two amino acid residues (peaks).

Thus, the critical point graph can be decomposed into linear sequences of alternating
peaks and passes corresponding to the main chain or backbone of the protein. For larger
residues, side chains may also be observed in the graph as side branches consisting of a
peak/pass motif. These observations are featured in Figure 7, which illustrates a critical
point graph and an electron density contour for the unit cell of a protein crystal.

In practice, we found that the critical point graph included some arcs originating from
the presence of connections between critical points associated with non-adjacent residues.
This is illustrated in Figure 6 and in the bottom left corner of Figure 7; in the main chain of
both graphs there is a jump that occurred as a result of a disul�de bridge between nearby
residues. These bonds can often be identi�ed, however, through further analysis of the
critical point graphs. For example, disul�de bridges are discerned from the representation
through the higher density values of their associated cysteine residues. To overcome the
problem of errors in the critical point graph due to ambiguous data we plan to generate
multiple possible models for a protein, corresponding to di�erent hypothesized backbones
resulting from the critical point graph. Thus, several alternative hypotheses will be consid-
ered and used to re�ne the image in an iterative approach to scene analysis.

Experiments were also carried out at low (5 �A) resolution, where the following was
observed:

� Secondary structure motifs, such as �-helices and �-strands, correspond to linear
(or quasi-linear) sequences of critical points. In the case of helices, these sequences
trace the central axis of the structure (see Figure 8), whereas they tend to catch the
backbone itself for �-strands. The average distance between observed critical points
and a model of the protein backbone was 1:68 � 0:59 �A.

� Other non-linear sequences of critical points were sometimes found to be representative
of irregular protein motifs such as loops.

� Highly connected, small graphs of critical points appear in other regions of the maps:
in the solvent region, at the disul�de bridges and between close protein segments.

Although the results of segmenting protein images using the topological approach has
proved promising, there is ongoing research being carried out to improve and enhance
ORCRIT. In particular, we are redeveloping the code for building the graph of critical points.
The new version of the code will incorporate more domain knowledge in order to �nd
multiple possible backbone traces. It will also incorporate a spline (rather than polynomial)
�tting function to interpolate the critical points for constructing the function �(r).
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Figure 6: Planar representation of a critical point sequence obtained from a topological
analysis of an electron density map at 3 �A resolution.
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Figure 7: 3D contour and critical point graph for a unit cell of protein 4PT1 (58 residues)
constructed at 3 �A resolution. The critical point graph in this �gure was generated
using the output of the ORCRIT program.
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Figure 8: Critical point graph of C� chain (black) for an helix motif at 3 �A (white) and 5
�A (gray) resolution.

Currently, we are investigating the relationships between critical points at varying res-
olutions. Figure 8 illustrates the superimposition of critical point representations of an
helix motif at low and medium resolution obtained using ORCRIT. As this �gure shows, the
linear segment of critical points derived at 5 �A resolution approximates the more detailed
critical point graph of a helix derived at 3 �A. More careful analysis suggests that there
exists a hierarchy between the peaks and passes at 5 �A and those at 3 �A. This relationship
between critical points at medium and low-resolution is illustrated in Figure 9, where indi-
vidual critical points at 5 �A resolution are associated with individual or multiple points at
medium-resolution.

5. Methods for Secondary Structure Identi�cation

Once a critical point graph is constructed, it can be analyzed to classify substructures
in the protein. A statistical analysis of the conformation of critical point sequences in
terms of geometrical parameters of motifs consisting of four sequential peak critical points
(pi; pi+1; pi+2; pi+3) suggests that the most useful parameters for the identi�cation of �-
helices and �-strands are the distance between peaks pi and pi+3, and the individual and
planar angles among critical points. We describe how these criteria were used to formulate
rules for the identi�cation of secondary structure motifs in a medium-resolution electron
density map of a protein.

In a previous paper (Leherte et al., 1994a), we described an approach to secondary
structure identi�cation in which the geometrical constraints in a critical point subgraph
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Figure 9: Relationship between critical points at 3 and 5 �A resolution for amino acids 13
to 29 in protein structure 1RNT. `+' and `*' denote peaks and passes in the main
chain. The numeric values correspond to the critical points location in an ordered
list (based on electron density) of all points. The correspondence between points
at di�erent levels in the hierarchy is based on their interdistance (must be less
than 2 �A).
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were treated in a boolean fashion, i.e., they were either satis�ed or not depending upon
whether or not their values fell within predetermined ranges. The procedure described in
the current paper relies on probabilistic belief measures based on statistics derived from
the PDB. Following, we describe alternative approaches based on the comparison of critical
point graphs with idealized secondary structure motifs. The templates we used consisted
of local subsequences of critical points, each point denoting a residue in an idealized model
of a protein.

5.1 Estimating Probabilities and Combining Evidence

To construct our model templates, we �rst performed a statistical analysis of 63 non-
homologous protein structures retrieved from the PDB. A set of occurrence probability
distributions f(ssmjg) were estimated for given secondary structure motifs (ssm) and geo-
metric constraints (g). We derived these values for the �-helix, and �-sheet and turn motifs
and for geometric constraints based on torsion and bond angles and on relative distance
between residues.

In building procedures for structure recognition and discrimination, two important is-
sues must be faced: �rst, how does one compute the primitive marginal and conditional
probability estimates such as f(ssmjg); and, second, how does one combine the informa-
tion from the several di�erent pieces of geometric evidence for or against each class, as in
f(ssmjg1; g2)? There are many tradeo�s to consider.

For the single-attribute probability estimations, f(ssmjg), one can use discrete cate-
gories and estimate probabilities from frequency counts. If only a few \bins" are employed
for, e.g., ranges of critical point inter-distance values, then achieving su�cient sample sizes
for bin counts presents little di�culty. As the number of bins grows and the \width" of
each bin correspondingly shrinks, the resulting histogram becomes a better and better ap-
proximator of an underlying continuous distribution, but here problems with small counts
lead to larger sampling error (variance). If one chooses to �t continuous distributions to
the data, the bias/variance dilemma manifests itself in the choice of distribution types and
the number of parameters for parameterized models.

In combining the individual terms representing secondary structure evidence, one must
address the issue of inter-attribute dependencies and the accuracy and e�ciency tradeo�s it
poses. Put most simply, how do we compute f(ssmjg1; g2) from f(ssmjg1) and f(ssmjg2)?
A pure Bayesian approach without underlying independence assumptions requires exponen-
tially many terms, and we therefore seek heuristic shortcuts.

Two methods for determining con�dence values for secondary structure assessment were
studied and applied to the problem of secondary structure identi�cation: 1) a Bayesian, or
Minimum Message Length (MML) approach, similar to that previously used in protein
substructure classi�cation in (Dowe, Allison, Dix, Hunter, Wallace, & Edgoose, 1996), and
2) an approach similar to that used in expert systems such as MYCIN (Shortli�e, 1976). We
should emphasize here that the primary goal of our described research is the construction of
e�ective structure recognition systems, rather than the comparison of alternative methods
of machine learning and classi�cation per se.
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5.2 A Bayesian/MML Approach

In adopting a Bayesian latent class analysis approach to the problem, we decided to treat the
estimation and combination issues together by �tting mixtures of continuous distributions
to the data for each class, under the conditional independence assumption commonly used
in mixture model approaches to classi�cation and clustering (McLachlan & Basford, 1988).

In a latent class analysis approach to �nding structure in a set of datapoints, one begins
with an underlying parameterized model. For example, one might posit that a set of points
represented by a 2D scatterplot was generated by a 2D Gaussian (normal) distribution,
with means �1; �2 and covariance matrix V12. Or the data might be better explained by
a mixture, or weighted sum, of several Gaussian distributions, each with its own 2D mean
vector and covariance matrix. In this approach, one tries to �nd an optimal set of parameter
values for the representation of each datapoint �x = (x1; x2). Optimality may be de�ned
in terms of maximum likelihood, Bayes optimality, or, as in our case, minimum message
length (MML)7.

In the case at hand, we have 11 dimensions instead of 2, and not all of the dimensions
are best modeled by simple Gaussians. It is generally accepted that angular data should
be modeled by one of the circular distributions such as the von Mises distribution (Fisher,
1993).

Two independence assumptions, crucial to computational e�ciency and data e�ciency,
underlie this approach:

1. Within a given class, the attributes characterizing a segment are mutually indepen-
dent.

2. The separate datapoints, each corresponding to a segment, are mutually independent.

Although neither of these assumptions is strictly true in this application, these assump-
tions are commonly made in such circumstances, and the methods based on them work
well in practice. Where dependence on these assumptions proves untenable, one can em-
ploy more elaborate models that incorporate explicit dependencies, such as Bayes Nets and
graphical models (Buntine, 1994).

5.3 A MYCIN-Like Approach

We determined that a method similar to the one used for the diagnosis system MYCIN (Rich
& Knight, 1991) was also e�ective for our application. Frequency distribution values provide
measures of belief and disbelief for secondary structure assignments based on individual
geometric constraints:

MB(ssm; g) = f(ssm; g) (1)

MD(ssm; g) = f(not ssm; g) (2)

where MB(ssm; g) is a measure of belief in the hypothesis that a given peak is associated
with a secondary structure ssm given the evidence g, whereas MD(ssm; g) measures the

7. However, we use the general term \Bayesian" informally for Bayesian, Minimum Description Length and
MML approaches to distinguish them jointly from other, especially \frequentist" approaches.
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the extent to which evidence g supports the negation of hypothesis ssm for the peak. Figure
10 illustrates the computed probability distributions for each geometric constraint (bond
angle, distance and torsion angle) and each secondary structure motif (helix, strand).

Like the modi�ed Bayesian mixture modeling approach described in the previous section,
the MYCINmethodology represents another heuristic approximation to a pure \naive" Bayes
approach. In this case, the initial primitive probability terms are simple frequency counts
and the rules for combining probabilities assume implicitly that di�erent evidence sources
are independent. This can be shown to lead to nonsensical classi�cations in extreme cases,
though in practice the approach often works quite well.

When two or more pieces of evidence are considered, the con�dence measures are com-
puted using the following formulae:

MB(ssm; g1 ^ g2) =MB(ssm; g1) +MB(ssm; g2)(1 �MB(ssm; g1)) (3)

MD(ssm; g1 ^ g2) =MD(ssm; g1) +MD(ssm; g2)(1�MD(ssm; g1)) (4)

Given these measures, an overall certainty factor, CF , can be determined for each peak p
in the critical point graph as the di�erence between the belief and disbelief measures:

CF (ssm; g) =MB(ssm; g)�MD(ssm; g) (5)

where g corresponds to the geometric constraints associated with peak p.
A result of the application of this method to the interpretation of an ideal critical point

graph is illustrated in Figure 11. This graph shows that broad bands of positive CF s are
indeed representative of regular secondary structure motifs such as �-helices and �-strands.

In practice, for each critical point, our approach constructs a CF value for each secondary
structure hypothesis. At the end of the procedure, the hypothesis with the highest CF
value is selected. The �nal results are thus a set of sequences of CF values characterized by
subsequences of various lengths with identical secondary structure selection.

When two or more pieces of evidence are considered, the con�dence measures are com-
puted using the following formulae:

MB(ssm; g1 ^ g2) =MB(ssm; g1) +MB(ssm; g2)(1 �MB(ssm; g1)) (6)

MD(ssm; g1 ^ g2) =MD(ssm; g1) +MD(ssm; g2)(1�MD(ssm; g1)) (7)

Given these measures, an overall certainty factor, CF , can be determined for each peak p
in the critical point graph as the di�erence between the belief and disbelief measures:

CF (ssm; g) =MB(ssm; g)�MD(ssm; g) (8)

where g corresponds to the geometric constraints associated with peak p. A result of the
application of this method to the interpretation of an ideal critical point graph is illustrated
in Figure 11. This graph shows that broad bands of positive CF s are indeed representative
of regular secondary structure motifs such as �-helices and �-strands.

5.4 Results

Following we demonstrate how the two methods of analysis described in the previous section
can be applied to the identi�cation of secondary structure in critical point graphs. We
consider graphs constructed from both ideal and experimental electron density maps.
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Figure 10: Probability distributions computed for measures of belief (MB) and disbelief
(MD) for a given secondary structure motif and geometric constraint.
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Figure 11: Certainty factors obtained for �-helix and �-strand hypotheses for an ideal crit-
ical point representation of protein 4PTI (58 residues) at medium-resolution.
The �gure also denotes the correct interpretation for residues 16-23 (strand),
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5.5 Application to Ideal Data

Two Bayesian/MML and one MYCIN-based analyses were applied to the secondary structure
identi�cation of ideal critical point trees. The �rst Bayesian module (Bayes1) was trained
using 60 out of the 63 ideal protein structure representations that were previously used to
generate occurrence frequency distribution functions for torsion angles, distances and planar
angles (Figure 10). The second Bayesian module (Bayes2) was trained using 46 ideal critical
point trees and 18 critical point representations obtained from the ORCRIT analysis of 3 �A
resolution reconstructed electron density maps. Three ideal critical point representations
were kept for testing: Cytochrome C2 (2C2C { 112 residues) is characterized by helices
and turns only; Penicillopepsin (3APP { 323 residues) contains short helices (8 residues or
less), turns, and �-strands up to 14 residues long; and the photosynthetic reaction centre
of Rhodobacter Sphaeroides (4RCR { 266 residues) is a rich �-helix structure with regular
segments of up to 24 residues.

The statistical Bayesian modules allow the classi�cation of critical points for which 11
geometrical attributes can be calculated: except for the �rst three and the last three points
of a critical point sequence, all points participate in four torsion angles, four distances
(pi to pi+3), and three planar angles. The Bayesian module can thus be applied to the
secondary structure recognition of segments which contain 7 peak critical points or more,
while the MYCIN-based module is applicable to 4-point (or longer) sequences. However, for
comparison purposes, only points for which all 11 geometrical attributes could be calculated
were considered for recognition. Results are presented in Table 1. This table reports
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the number of segments8 which have been correctly or incorrectly identi�ed by either the
Bayesian approaches or the MYCIN-based module. All modules were designed to classify
recognized secondary structure motifs among four di�erent classes: `helix', `strand', `turn',
and `other'. Regarding the class `helix', a distinction between �-helices and helices 310 was
made a posteriori to help in the interpretation of the results.

Two types of percentage values are given in Table 1. The �rst type, i.e., the percentage
of actual secondary structure information that was identi�ed, was computed over the total
number of actual secondary structure motifs present in the three test protein structures: 25
�-helices, 25 �-strands, 10 310 helices, and 42 turns. Higher percentage values observed for
the MYCIN-based results versus the Bayesian results come from the fact that longer segments
are recognized as potential helices or strands. A better overlap with the actual secondary
structure motifs is thus more likely to occur using the MYCIN approach. This is illustrated by
the �rst two examples described in Figure 12. Selected secondary structure motifs of proteins
2C2C and 3APP are compared with the hypotheses generated by the MYCIN-based and Bayes
modules. It is observed that, in these two cases, the longer identi�cations provided using
MYCIN are closer to the actual secondary structure of the amino acid sequences.

The percentage of correctly identi�ed points within the ideal critical point segments was
computed over the total number of assigned critical point segments reported in Table 1.
Regarding the class `helix', the longer segments discovered by the MYCIN-based module, as
well as the larger number of incorrectly recognized segments, lead to lower percentage values
for this particular method. This is shown in the third example displayed in Figure 12. The
MYCIN-based module associates a long �-helix with this particular amino acid sequence of
protein 4RCR which deviates from ideality by �ve residues, while the Bayes modules provides
reasonable solutions.

It is worthwhile to not that even if all of the segments are correctly assigned, the
percentage of correctly identi�ed peaks is not 100%. This is due to the fact that most of
the recognized segments (sequences of peaks) are shifted by one residue with respect to the
de�nition given in the PDB �le.

From the results reported in Table 1, it is clear that the �rst Bayesian module allows a
�ner di�erentiation between helices and turns (turns are four or �ve residue long segments
whose geometry may be similar to the helix geometry) than the MYCIN-based approach. The
MYCIN-based approach tends to assign a label `helix' to actual turns as shown in Example
(4) in Figure 12. On the other hand, 310 helices are correctly identi�ed by the MYCIN-
derived rules, but less often discerned using the �rst Bayesian approach (See Example (5)
in Figure 12). The MYCIN-based module actually has a strong tendency to exaggerate the
helical character of a segment that is distorted with respect to the ideal case. This raises
identi�cation ambiguities for 27 (51-24) short segments. No wrong identi�cation is made
using the �rst Bayesian approach, except for one �-strand. This segment was also identi�ed
as a possible strand using the MYCIN-based module, but the hypothesis was later rejected
by a post-processing stage which checks for parallelism with other discovered �-strands.

8. In this table a segment denotes a sequence (length � 2) of adjacent peak critical points which belong to
the same secondary structure class (helix, �-strand, turn). When comparing results, it should be noted
that the PDB data set is, itself, not strictly consistent since varying secondary structure de�nitions and
assignment methods are used to assess the structure of proteins.
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MYCIN Bayes1 Bayes2

�-Helices (actual no = 25)

No of (correctly) assigned segments (24) 51 (24) 24 (21) 22

% of correctly recognized actual motifs 98 87 88

% of correctly identi�ed peaks 63 83 82

�-Strands (actual no = 25)

No of (correctly) assigned segments (24) 24 (20) 21 (24) 30

% of correctly recognized actual motifs 89 71 84

% of correctly identi�ed peaks 82 82 81

310 Helices (actual no = 10)

No of (correctly) assigned segments (10) 10 (7) 7 (7) 7

% of correctly recognized actual motifs 97 56 47

% of correctly identi�ed peaks 70 70 61

Turns (actual no = 42)

No of (correctly) assigned segments (4) 4 (12) 12 (21) 28

% of correctly recognized actual motifs 7 34 41

% of correctly identi�ed peaks 46 77 59

Table 1: Results from the application of two Bayesian approaches and a MYCIN-based
method to the recognition of secondary structure motifs in ideal protein back-
bones constructed from C�CO centres of mass. Note that the numbers in brackets
denote the number of correctly assigned, versus total number of assigned, segments
(sequences of peaks).
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The application of the second Bayesian approach trained with more realistic critical
point representations generated a larger number of identi�ed �-strands and turns. This
however went with a number of incorrect identi�cations which are, in the case of �-strands,
all associated with very short segments (2 or 3 points). In the case of turns, the percentage
of correctly identi�ed critical points is lower (59% with respect to 77%) due to one particular
motif containing seven points.

The analysis of ideal critical point trees allows to conclude that the second Bayesian
module is more accurate in detecting �-strand and turn structures (there is an increased
number of recognized motifs); but the use of noisy data in the training stage leads to a
less acute ability of the module to distinguish short helix-like motifs (there is an increased
number of incorrectly identi�ed motifs).

5.6 Application to Experimental Data

Above we presented results obtained in applying methods for secondary structure identi-
�cation to critical point graphs constructed from ideal electron density maps. Following,
we describe an application of our methods to the recognition of motifs in a critical point
representation constructed by applying ORCRIT to an electron density map generated from
experimental data. We also show how our structure recognition approaches can be improved
through a postprocessing analysis of the representation. The experiment was carried out
using a 3 �A resolution experimental map of Penicillopepsin, a protein composed of 323
amino acid residues (Hsu, Delbare, James, & Hofmann, 1977; James & Sielecki, 1983).

Neglecting the passes located between the peaks, geometrical parameters were computed
for short fragments composed of seven adjacent peaks in the main branch of the graph for
the protein. Before achieving this geometrical analysis, some preprocessing work was done
in order to �t the critical point graphs to an ideal model as described above. Distances were
computed for sets of adjacent peaks, and peaks separated by a distance smaller than 1.95 �A
were merged into a single point situated at their center of mass. The critical point linkage
was then checked: if two adjacent peaks were separated by a distance � 5 �A then the peaks
were assumed to be connected. Considering connected sequences of three peaks at a time,
if the distance between the �rst and third peak was smaller than 4 �A, then the middle peak
was not considered to be part of the backbone of the protein (i.e., the middle peak probably
denotes a side chain). Finally, all resulting sequences of peaks (which are thus likely to be
representative of the protein backbone) were submitted to our three secondary structure
analysis methods.

Initially poor results observed from the MYCIN-like method motivated the development
of a post-processing procedure which was imposed to eliminate all helical segments with
negative torsion angle values and all isolated �-strand segments, i.e., extended segments
that are not parallel to other similar motifs. This postprocessing step analyses the global
properties of the structure, while the measures of belief/disbelief focus only on the local
geometric properties of a motif. Postprocessing drastically reduces the number of incorrectly
recognized motifs and consequently increases the quality of the recognition procedure (Rost,
Casadia, & Farisellis, 1996).

Table 2 presents a comparison of results of applying the three methods for identifying
secondary structure motifs to the experimental electron density map of penicillopepsin.
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(1) 2c2c
aa no. 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Actual ss H H H H H H H 310 310 310 310 - - -
MYCIN H H H H H H H H H H H H H H
Bayes1 H H H H H T T H H H H T - -
Bayes2 H - H H H H H H H H H H H -

4

17

(2) 3app
aa no. 203 204 205 206 207 208 209 210 211 212
Actual ss S S S S S S S S S S
MYCIN S S S S S S S S S S
Bayes1 T - S - - - S S S S
Bayes2 S - - - - - S S S S

      

203

212

(3) 4rcr
aa no. 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
Actual ss - - - - - H H H H H H H H H H
MYCIN H H H H H H H H H H H H H H H
Bayes1 T S - H T H H H H H H H H H -
Bayes2 T - - H T H H H H H H H H H H

149

163

(4) 2c2c
aa no. 31 32 33 34 35 36 37 38 39
Actual ss - T T T T T T T -
MYCIN - H H H H H H - -
Bayes1 - T T T T T - T T
Bayes2 - T T T T T T - T

31
39

(5) 3app
aa no. 126 127 128 129 130 131
Actual ss - 310 310 310 - -
MYCIN - H H H H -
Bayes1 - H H - - -
Bayes2 - - - - - -

126

131

(6) 3app
cp no. 71 199 1370 506 75 388
aa no. 139 140 141 142 143 144
Actual ss H H H H H H
MYCIN - H H H H H
Bayes1 - T S H - T
Bayes2 - H H H - T

139

144

(7) 3app
cp no. 188 482 205 235 905 320 756 581 122 422 1431 42 630 904 825
aa no. 129 - 135 134 133 132 131 132 - - 103 102 - 85 86
Actual ss H - - - - - - - - - - - - - -
MYCIN H H H H H H H H H H H H H H H
Bayes1 - - - - H T T - - H - H - - -
Bayes2 T - H T H T - T - - - H H - H

103

102

135
131

129

86

85

Figure 12: Selected amino acid secondary structure motifs and their identi�cations (`cp',
`aa', and `ss' stand for `critical point', `amino acid', and `secondary structure',
respectively. `H', `T', `S', and `-' denote the secondary structure classes: `helix',
`turn', `sheet', and `other'.) 150
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MYCIN Bayes1 Bayes2

�-Helices (actual no = 3)

No of (correctly) assigned segments (3) 7 (0) 0 (2) 3

% of correctly recognized actual motifs 91 9 45

% of correctly identi�ed peaks 26 - 57

�-Strands (actual no = 15)

No of (correctly) assigned segments (12) 12 (12) 12 (9) 9

% of correctly recognized actual motifs 70 41 30

% of correctly identi�ed peaks 73 91 96

310 Helices (actual no = 2)

No of (correctly) assigned segments (1) 1 (0) 0 (0)0

% of correctly recognized actual motifs 50 17 0

% of correctly identi�ed peaks 75 - -

Turns (actual no = 1)

No of (correctly) assigned segments (0) 0 (1) 3 (1) 2

% of correctly recognized actual motifs 0 33 27

% of correctly identi�ed peaks - 100 43

Table 2: Results from the application of two Bayesian approaches and a MYCIN-based
method to the recognition of secondary structure motifs in minimal spanning trees
constructed from a critical point analysis of an experimental electron density map
of penicillopepsin at 3 �A resolution. Note that the numbers in brackets denote
the number of correctly assigned, versus totally assigned, segments (sequences of
peaks).
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According to Table 2, the MYCIN-based approach appears to have greater success in
recognizing helical motifs in experimental maps. Example (6) in Figure 12 depicts one
of the three helix motifs that was correctly recognized using the MYCIN-based approach.
However, this approach also misidenti�es several motifs as helices. Among the four incor-
rectly identi�ed helices, two four-point segments are actual turns, one four-point segment
is characterized by negative torsion angles, and a 15-point sequence of critical points is a
succession of three jumps (a jump is a connection occurring between non-adjacent amino
acid residues) (See Example (7) in Figure 12). The Bayes modules incorrectly identify a
turn in this same region of the electron density map. Jumps are problematic and may
seriously hinder the recognition rate, especially in experimental maps blurred by noise and
errors.

Table 2 illustrates that the consideration of noisier data in the training set (module
Bayes2) leads to an improvement in the number of identi�ed �-helices with respect to the
�rst Bayesian module (Example (6) in Figure 12). However, this also leads to a number of
incorrectly identi�ed segments. One segment of length two is wrongly identi�ed as helix. It
actually corresponds to a jump between non-adjacent amino acid residues; this jump also
generates an interpretation error with the MYCIN-based algorithm. The poor accuracy in
turn recognition (43 %) is due to this wrongly identi�ed segment.

6. Related Research

The interpretation of protein images has been greatly facilitated in recent years by the
advent of powerful graphics stations coupled with the implementation of highly e�cient
computer programs, most notably FRODO (Jones, 1992) and O (Jones et al., 1991). Although
these programs were designed speci�cally for the visual analysis of electron density maps
of proteins, they still require a signi�cant amount of expert intervention and interpretation
and require considerable time investment. Unlike these systems ORCRIT was designed as a
more automated approach to protein model building and interpretation.

The research presented in this paper is a component of an ongoing research project in
the area of molecular scene analysis (Fortier et al., 1993; Glasgow et al., 1993). The primary
objective of this research is the implementation and application of computational methods
for the classi�cation and understanding of complex molecular images. Towards this goal,
we have proposed a knowledge representation framework for integrating existing sources of
protein knowledge (Glasgow, Fortier, Conklin, Allen, & Leherte, 1995). Representations
for reasoning about the visual and spatial characteristics of a molecular scene are captured
in this framework using techniques from computational imagery (Glasgow, 1993; Glasgow
& Papadias, 1992). This paper extends previous publications in molecular scene analysis
by placing the research in an arti�cial intelligence framework and relating it to work in
machine vision. As well, it focuses on the use of uncertain reasoning for secondary structure
interpretation in the critical point representation and provides further experimental results
supporting our approaches to protein image interpretation.

Two kinds of image improvement procedures are being considered in conjunction with
the information stored in a critical point representation. The �rst one consists of improv-
ing phase information at a given resolution. This is a necessary, but di�cult, step in a
protein structure determination carried out from experimental data. Structural informa-
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tion retrieved from a topological analysis might be injected into a so-called direct methods
procedure, which has previously been successfully applied to the structure determination of
small molecules at high resolution (Hauptman & Karle, 1953), and more recently to macro-
molecules as well. However, these methods are presently not applicable to protein images at
low- and medium-resolution data, and time-consuming experimental methods are generally
used for phase recovery in protein structure elucidation.

The second set of procedures for protein image enhancement involves the construction
and interpretation of increasingly higher-resolution maps. This is presently carried out
visually by crystallographers who have access to a well-phased medium- or high-resolution
map. The highest density regions are �tted with fragments retrieved from a database of
chemical templates, eventually allowing for the determination of the protein's 3D structure
(Jones et al., 1991). These two protein image reconstruction procedures are interrelated:
improved phases lead to a more reliable map in which further motif identi�cation can take
place. Under such considerations, secondary structure motifs detected in a low-resolution
map are regions of interest to generate medium-resolution information, which would further
give access to the the amino acid residue locations.

These procedures give rise to an iterative approach to molecular scene analysis. In
an iterative re�nement process, if some portion of the image can be interpreted then this
information is applied (via an inverse Fourier transform) to adjust the current phases. The
modi�ed phases are then used to generate a new image. This approach to scene analysis thus
proceeds from an initial coarse (low-resolution) image through progressively more detailed
(higher-resolution) images in which further substructures are identi�able9.

What this implies is that at any particular resolution, it is not necessary that our analysis
identify all substructures. The recognition of any parts of the scene can be used to improve
phases, giving rise to an overall improvement to the image. The new image can then be
further analyzed leading to additional interpretations. This process is iteratively applied
(within a heuristic search strategy) until the protein structure is fully determined.

The critical point representation described in this paper is just one component of the
knowledge representation scheme for computational imagery. A second component of the
scheme involves a spatial logic, which has been used to represent and reason with the
concepts and qualitative spatial features associated with a protein molecule (Conklin et al.,
1993b; Conklin, Fortier, Glasgow, & Allen, 1996). Associated with the spatial representation
is a knowledge discovery technique, called IMEM (Conklin & Glasgow, 1992), based on
a theory of conceptual clustering. This system has been used to discover recurrent 3D
structural motifs in molecular databases (Conklin, Fortier, & Glasgow, 1993a; Conklin
et al., 1996). We anticipate that this and other machine learning/discovery techniques
(e.g., (Hunter, 1992; Lapedes, Steeg, & Farber, 1995; Unger et al., 1989)) could be applied
to aid in a top-down analysis of novel molecular scenes in order to anticipate and classify
structural motifs. This would be complementary to the bottom-up scene analysis provided
by the topological approach described in this paper.

Molecular scene analyses can further bene�t from research in protein structure predic-
tion. In particular, we are currently investigating formulations derived for the inverse folding
problem (Bowie, Luethy, & Eisenberg, 1991). Given an amino acid sequence and a set of

9. The resolution of the image depends both on the number of experimental reections available as well as
on the amount of phase information.
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core segments (pieces of secondary structure forming the tightly packed internal protein
core), this approach to prediction evaluates each possible alignment (threading) of a known
primary sequence of amino acids onto possible core templates. The problem of identifying
individual residues in a critical point map at medium to high-resolution can be addressed in
a similar manner, i.e., by attempting to thread a sequence onto a protein structure derived
from our topological analysis. This problem is signi�cantly simpler than protein structure
prediction since it involves threading a sequence onto its own experimentally determined
structure, rather than onto templates retrieved from a library of possible models. In the
threading approach proposed by Lathrop and Smith (1994), a scoring function is used to
derive the statistical preference of a residue for a given environment. Modi�cations to the
current scoring function, to incorporate properties available in the electron density map and
critical point graph representations, are being implemented in order to customize this ap-
proach to the information available from our topological analysis (Baxter, Steeg, Lathrop,
Glasgow, & Fortier, 1996).

7. Conclusions

It was reported in this paper that a topological approach can e�ectively be applied to the
segmentation of protein images into their meaningful parts at low- and medium-resolution.
Furthermore, it was shown that secondary structure motifs could be identi�ed in medium-
resolution images through a geometric analysis of the image representation; the application
of geometric rules and probabilities yields a measure of con�dence that a given peak is a
component of a known secondary structure motif.

Three secondary structure identi�cation modules were applied to the interpretation of
ideal and experimental critical point graphs. Two probabilistic Bayesian approaches and
a MYCIN-based method all revealed that geometric components such as torsion angles,
distances and planar angles are useful in that they di�erentiate between helices, strands,
and turns.

Both the Bayesian and MYCIN-derived approaches were relatively successful in assigning
secondary structure identi�cations to sequences of critical points that are geometrically well
resolved. In the case of noisy experimental data, their accuracy decreased. We anticipate
that the accuracy could be further improved through the use of larger training sets and
training for 3-10 helix and other subclasses. However, we do not expect to achieve a full
secondary structure recognition for a protein { rather we expect to interpret good (less
noisy) portions of an electron density map and use this information to iteratively improve
our image in order to carry out further analyses.

The protein structures used to compose the training and test sets all contain backbone
information only. These structures are free of heteroatoms and/or small solvent molecules.
The prior knowledge of the chemical composition of a crystallographic cell would certainly
help in anticipating problems such as connections between non-adjacent residues through
high density peaks. Additional experimental data would permit us to extend the scope of
the three approaches described in the present paper.

Modern crystallographic studies remain at the forefront of current e�orts to character-
ize and understand molecular recognition processes. A long-term goal of our research in
molecular scene analysis is to assist these studies through a computational methodology for
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aiding expert crystallographers in the complex imagery processes required to fully interpret
the 3D structure of a protein. The topological approach presented here is an important
component of this methodology. Further research is required, however, to extend it for the
analysis of multi-resolution maps, and to incorporate more domain knowledge into these
analyses.
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