...items
For CSPs, these items are all possible variable-value pairs.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...items
The lattice of sets can also represent problems where each variable can have a different number of assigned values.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...states
The ket notation is conceptually similar to the use of boldface to denote vectors and distinguish them from scalars.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...becomes
66#66 is the transpose of U with all elements changed to their complex conjugates. That is 67#67.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...obtained
I thank J. Gilbert for pointing out this technique, as a variant of the orthogonal Procrustes problem [24].

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...numerically
High precision values were obtained from the FindRoot function of Mathematica.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...algorithm
The values are given in Online Appendix 1.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...degree
Using the Mathematica function Rationalize and the package NumberTheory`Recognize`.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...nogood
I thank J. Lamping for suggesting this.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...evaluation
I thank S. Vavasis for suggesting this improvement in the classical simulation of the algorithm.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...problems
That is, problems generated by random selection of nogoods without regard for whether they have a solution.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...point
This differs slightly from the results for problems with more specified structure on the nogoods, such as explicitly removing the necessary nogoods from consideration [50, 53].

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...solubility
This is a particularly large error for this theory: it does better for problems with larger constraints or more allowed values per variable.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...nogoods
This differs slightly from other studies of random 3SAT in not allowing duplicate clauses in the propositional formula.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```
...solution
For the values of 245#245 and small problems examined here, there are enough soluble instances randomly generated that there is no need to rely on a prespecified solution to efficiently find soluble test problems.

```.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```