 
  
  
   
 Next:    About this document 
Up: No Title
 Previous:  Concluding Remarks
 
 
References
- 
Ahn, W. &  Medin, D. L. (1989).
  A two-stage categorization model of family resemblance
  sorting.
 In  Proceedings of the Eleventh Annual Conference of the
  Cognitive Science Society,  315--322. Ann Arbor, MI: Lawrence Erlbaum.
 
- 
Anderson, J. R. &  Matessa, M.  (1991).
  An iterative Bayesian algorithm for categorization.
 In Fisher, D., Pazzani, M., & Langley, P.,  Concept
  formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA:
  Morgan Kaufmann.
 
- 
Biswas, G., Weinberg, J., & Li, C. (1994).
  ITERATE: A conceptual clustering method for knowledge
  discovery in databases.
 In Braunschweig, B. &  Day, R.,  Innovative
  Applications of Artificial Intelligence in the Oil and Gas Industry.
  Editions Technip.
 
- 
Biswas, G., Weinberg, J. B., Yang, Q., & Koller, G. R.  (1991).
  Conceptual clustering and exploratory data analysis.
 In  Proceedings of the Eighth International Machine Learning
  Workshop,  591--595. San Mateo, CA: Morgan Kaufmann.
 
- 
Carpineto, C. &  Romano, G.  (1993).
  GALOIS: An order-theoretic approach to conceptual
  clustering.
 In  Proceedings of the Tenth International Conference on Machine
  Learning,  33--40. Amherst, MA: Morgan Kaufmann.
 
- 
Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D.
 (1988).
  AUTOCLASS: A Bayesian classification system.
 In  Proceedings of the Fifth International Machine Learning
  Conference,  54--64. Ann Arbor, MI: Morgan Kaufmann.
 
- 
Corter, J. &  Gluck, M. (1992).
  Explaining basic categories: feature predictability and
  information.
  Psychological Bulletin,  111, 291--303.
 
- 
De Alte Da Veiga, F.  (1994).
  Data Analysis in Biomedical Research: A Novel Methodological
  Approach and its Implementation as a Conceptual Clustering Algorithm (in
  Portuguese).
 Ph.D. thesis, Universidade de Coimbra, Unidade de Biomatemática
  e Informática Médica da Faculdade de Medicina.
 
- 
Decaestecker, C.  (1991).
  Description contrasting in incremental concept formation.
 In Kodratoff, Y.,  Machine Learning -- EWSL-91, No. 482,
  Lecture Notes in Artificial Intelligence,  220--233. Springer-Verlag.
 
- 
Devaney, M. &  Ram, A. (1993).
  Personal communication, oct. 1993.
 
- 
Duda, R. O. &  Hart, P. E. (1973).
  Pattern Classification and Scene Analysis.
 New York, NY: Wiley and Sons.
 
- 
Everitt, B.  (1981).
  Cluster Analysis.
 London: Heinemann.
 
- 
Fayyad, U.  (1991).
  On the Induction of Decision Trees for Multiple Concept
  Learning.
 Ph.D. thesis, University of Michigan, Ann Arbor, MI: Department of
  Computer Science and Engineering.
 
- 
Fisher, D.  (1995).
  Optimization and simplification of hierarchical
  clusterings.
 In  Proceedings of the First International Conference on
  Knowledge Discovery and Data Mining,  118--123. Menlo Park, CA: AAAI
  Press.
 
-  
Fisher, D.  & Hapanyengwi, G.  (1993).
  Database management and analysis tools of machine
  induction.
  Journal of Intelligent Information Systems,  2, 5--38.
 
-  
Fisher, D., Xu, L., Carnes, J., Reich, Y., Fenves, S., Chen, J., Shiavi, R.,
  Biswas, G., & Weinberg, J. (1993).
  Applying AI clustering to engineering tasks.
  IEEE Expert,  8, 51--60.
 
- 
Fisher, D., Xu, L., & Zard, N. (1992).
  Ordering effects in clustering.
 In  Proceedings of the Ninth International Conference on Machine
  Learning,  163--168. San Mateo, CA: Morgan Kaufmann.
 
- 
Fisher, D. H.  (1987a).
  Knowledge acquisition via incremental conceptual
  clustering.
  Machine Learning,  2, 139--172.
 
- 
Fisher, D. H.  (1987b).
  Knowledge Acquisition via Incremental Conceptual Clustering.
 Ph.D. thesis, University of California, Irvine, CA: Department of
  Information and Computer Science.
 
- 
Fisher, D. H.  (1989).
  Noise-tolerant conceptual clustering.
 In  Proceedings of the International Joint Conference Artificial
  Intelligence,  825--830. Detroit, MI: Morgan Kaufmann.
 
- 
Fisher, D. H. &  Langley, P. (1990).
  The structure and formation of natural categories.
 In Bower, G. H.,  The Psychology of Learning and
  Motivation,  25. San Diego, CA: Academic Press.
 
- 
Fisher, D. H. &  Schlimmer, J.  (1988).
  Concept simplification and prediction accuracy.
 In  Proceedings of the Fifth International Conference on Machine
  Learning,  22--28. Ann Arbor, MI: Morgan Kaufmann.
 
- 
Gennari, J.  (1989).
  Focused concept formation.
 In  Proceedings of the Sixth International Workshop on Machine
  Learning,  379--382. San Mateo, CA: Morgan Kaufmann.
 
- 
Gennari, J., Langley, P., &  Fisher, D.  (1989).
  Models of incremental concept formation.
  Artificial Intelligence,  40, 11--62.
 
- 
Gluck, M. A.  & Corter, J. E. (1985).
  Information, uncertainty, and the utility of categories.
 In  Proceedings of the Seventh Annual Conference of the
  Cognitive Science Society,  283--287. Hillsdale, NJ: Lawrence Erlbaum.
 
- 
Hadzikadic, M. &  Yun, D.  (1989).
  Concept formation by incremental conceptual clustering.
 In  Proceedings of the International Joint Conference Artificial
  Intelligence,  831--836. San Mateo, CA: Morgan Kaufmann.
 
- 
Hanson, R., Stutz, J., & Cheeseman, P.  (1991).
  Bayesian classification with correlation and inheritance.
 In  Proceedings of the 12th International Joint Conference on
  Artificial Intelligence,  692--698. San Mateo, CA: Morgan Kaufmann.
 
- 
Iba, G.  (1989).
  A heuristic approach to the discovery of macro operators.
  Machine Learning,  3, 285--317.
 
- 
Iba, W. &  Gennari, J. (1991).
  Learning to recognize movements.
 In Fisher, D., Pazzani, M., & Langley, P.,  Concept
  Formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA:
  Morgan Kaufmann.
 
- 
Ketterlin, A., Gançarski, P., &  Korczak, J. (1995).
  Hierarchical clustering of composite objects with a variable
  number of components.
 In  
Preliminary papers of the Fifth International Workshop on
  Artificial Intelligence and Statistics,  303--309.
 
- 
Kilander, F.  (1994).
  Incremental Conceptual Clustering in an On-Line Application.
 Ph.D. thesis, Stockholm University, Stockholm, Sweden: Department of
  Computer and Systems Sciences.
 
- 
Kolodner, J. L.  (1983).
  Reconstructive memory: A computer model.
  Cognitive Science,  7, 281--328.
 
- 
Lebowitz, M.  (1982).
  Correcting erroneous generalizations.
  Cognition and Brain Theory,  5, 367--381.
 
- 
Lebowitz, M.  (1987).
  Experiments with incremental concept formation: UNIMEM.
  Machine Learning,  2, 103--138.
 
- 
Levinson, R.  (1984).
  A self-organizing retrieval system for graphs.
 In  Proceedings of the National Conference on Artificial
  Intelligence,  203--206. San Mateo, CA: Morgan Kaufmann.
 
- 
Lopez de Mantaras, R.  (1991).
  A distance-based attribute selection measure for decision tree
  induction.
  Machine Learning,  6, 81--92.
 
- 
Martin, J. &  Billman, D.  (1994).
  Acquiring and combining overlapping concepts.
  Machine Learning,  16, 121--155.
 
- 
McKusick, K. &  Langley, P.  (1991).
  Constraints on tree structure in concept formation.
 In  Proceedings of the International Joint Conference on
  Artificial Intelligence,  810--816. San Mateo, CA: Morgan Kaufmann.
 
- 
McKusick, K. &  Thompson, K.  (1990).
  COBWEB/3: A portable implementation (Tech. Rep. No.
  FIA-90-6-18-2).
 Moffett Field, CA: AI Research Branch, NASA Ames Research Center.
 
- 
Medin, D.  (1983).
  Structural principles of categorization.
 In Tighe, T. &  Shepp, B.,  Perception,
  Cognition, and Development,  203--230. Hillsdale, NJ: Lawrence
  Erlbaum.
 
- 
Michalski, R. S. &  Stepp, R.  (1983a).
  Automated construction of classifications: conceptual
  clustering versus numerical taxonomy.
  IEEE Transactions on Pattern Analysis and Machine
  Intelligence,  5, 219--243.
 
- 
Michalski, R. S. &  Stepp, R.  (1983b).
  Learning from observation: conceptual clustering.
 In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M.,
   Machine Learning: An Artificial Intelligence Approach. San Mateo, CA:
  Morgan Kaufmann.
 
- 
Mingers, J.  (1989a).
  An empirical comparison of selection measures for decision-tree
  induction.
  Machine Learning,  3, 319--342.
 
- 
Mingers, J.  (1989b).
  An empirical comparison of pruning methods for decision-tree
  induction.
  Machine Learning,  4, 227--243.
 
- 
Nevins, A. J.  (1995).
  A branch and bound incremental conceptual clusterer.
  Machine Learning,  18, 5--22.
 
- 
Quinlan, J. R.  (1986).
  Induction of decision trees.
  Machine Learning,  1, 81--106.
 
- 
Quinlan, J. R.  (1987).
  Simplifying decision trees.
  International Journal of Man-machine Studies,  27,
  221--234.
 
- 
Quinlan, J. R.  (1993).
  C4.5: Programs for Machine Learning.
 San Mateo, CA: Morgan Kaufmann.
 
- 
Reich, Y. &  Fenves, S.  (1991).
  The formation and use of abstract concepts in design.
 In Fisher, D., Pazzani, M., & Langley, P.,  Concept
  Formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA:
  Morgan Kaufmann.
 
- 
Utgoff, P.  (1994).
  An improved algorithm for incremental induction of decision
  trees.
 In  Proceedings of the Eleventh International Conference on
  Machine Learning,  318--325. San Mateo, CA: Morgan Kaufmann.
 
- 
Wallace, C. S. &  Dowe, D. L.  (1994).
  Intrinsic classification by MML - the SNOB program.
 In  Proceedings of the 7th Australian Joint Conference on
  Artificial Intelligence,  37--44. UNE, Armidale, NSW, Australia: World
  Scientific.
 
- 
Weiss, S. &  Kulikowski, C.  (1991).
  Computer Systems that Learn.
 San Mateo, CA: Morgan Kaufmann.
 
- 
Wilcox, C. S. &  Levinson, R. A.  (1986).
  A self-organized knowledge base for recall, design, and
  discovery in organic chemistry.
 In Pierce, T. H.   Hohne, B. A.,  Artificial
  Intelligence Applications in Chemistry. Washington, DC: American Chemical
  Society.
 
 
 
  
  
   
 Next:    About this document 
Up: No Title
 Previous:  Concluding Remarks
 
JAIR, 4
Douglas H. Fisher 
Sat Mar 30 11:37:23 CST 1996