next up previous
Next: About this document ... Up: Bound Propagation Previous: Discussion


Alon MegiddoAlon Megiddo1990
Alon, N. Megiddo, N. 1990.
Parallel linear programming in fixed dimension almost surely in constant time
In IEEE Symposium on Foundations of Computer Science, 574-582.

Beinlich, Suermondt, Chavez, CooperBeinlich et al.1989
Beinlich, I., Suermondt, G., Chavez, R., Cooper, G. 1989.
The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks
In Proceedings of the 2nd European Conference on AI and Medicine. Springer-Verlag, Berlin.

Hinton, G. 1999.
Products of experts
In Proceedings of the Ninth International Conference on Artificial Neural Networks,  1, 1-6.

Jaakkola JordanJaakkola Jordan1999
Jaakkola, T. Jordan, M. 1999.
Variational probabilistic inference and the QMR-DT network
Journal of Artificial Intelligence Research, 10, 291-322.

Kappen WiegerinckKappen Wiegerinck2002
Kappen, H. Wiegerinck, W. 2002.
A novel iteration scheme for the cluster variation method
In Advances in Neural Information Processing Systems,  14, In press.

Khachiyan, L. 1979.
A polynomial algorithm in linear programming (in Russian)
Doklady Akademiia Nauk SSSR, 224, 1093-1096.
English translation: Soviet Mathematics Doklady, Volume 20, 191-194.

Leisink KappenLeisink Kappen2001
Leisink, M. Kappen, H. 2001.
A tighter bound for graphical models
Neural Computation, 13(9), 2149-2171.

Leisink KappenLeisink Kappen2002
Leisink, M. Kappen, H. 2002.
Means, correlations and bounds
In Dietterich, T. G., Becker, S., Ghahramani, Z., Advances in Neural Information Processing Systems,  14, 455-462, Cambridge, MA. MIT Press.

Murphy, Weiss, JordanMurphy et al.1999
Murphy, K., Weiss, Y., Jordan, M. 1999.
Loopy belief propagation for approximate inference: An empirical study
In Uncertainty in Artificial Intelligence,  15, 467-475.

Neal, R. 1992.
Connectionist learning of belief networks
Artificial intelligence, 56, 71-113.

Pearl, J. 1988.
Probabilistic reasoning in intelligent systems, 204-210.
Morgan Kaufmann Publishers, Inc.
ISBN 0-934613-73-7.

Peterson AndersonPeterson Anderson1987
Peterson, C. Anderson, J. 1987.
A mean field theory learning algorithm for neural networks
Complex systems, 1, 995-1019.

Plefka, T. 1981.
Convergence condition of the TAP equation for the infinite-ranged ising spin glass model
Journal of Physics A: Mathematical and general, 15, 1971-1978.

Saul, Jaakkola, JordanSaul et al.1996
Saul, L., Jaakkola, T., Jordan, M. 1996.
Mean field theory for sigmoid belief networks
Journal of Artificial Intelligence Research, 4, 61-76.

Shwe, Middleton, Heckerman, Henrion, Horvitz, Lehmann, CooperShwe et al.1991
Shwe, M., Middleton, B., Heckerman, D., Henrion, M., Horvitz, E., Lehmann, H., Cooper, G. 1991.
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base
Methods of Information in Medicine, 30, 241-255.

Thouless, Andersson, PalmerThouless et al.1977
Thouless, D., Andersson, P., Palmer, R. 1977.
Solution of `solvable model of a spin glass'
Philisophical Magazine, 35(3), 593-601.

Todd, M. 2002.
The many facets of linear programming
Mathematical Programming, 91, 417-436.

Wainwright, Jaakkola, WillskyWainwright et al.2002
Wainwright, M., Jaakkola, T., Willsky, A. 2002.
A new class of upper bounds on the log partition function
In Uncertainty in Artificial Intelligence,  18.

Yedidia, Freeman, WeissYedidia et al.2000
Yedidia, J., Freeman, W., Weiss, Y. 2000.
Generalized belief propagation
In Advances in Neural Information Processing Systems,  13, 689-695.

Zhang PooleZhang Poole1994
Zhang, N. Poole, D. 1994.
A simple approach to Bayesian network computations
In Proceedings of the Tenth Canadian Conference on Artificial Intelligence, 171-178.

Martijn Leisink 2003-08-18