
Journal of Artificial Intelligence Research 15 (2001) 1-30 Submitted 11/00; published 7/01

Goal Recognition through Goal Graph Analysis

Jun Hong j.hong@ulst.ac.uk

School of Information and Software Engineering
University of Ulster at Jordanstown
Newtownabbey, Co. Antrim BT37 0QB, UK

Abstract

We present a novel approach to goal recognition based on a two-stage paradigm of graph
construction and analysis. First, a graph structure called a Goal Graph is constructed to
represent the observed actions, the state of the world, and the achieved goals as well as
various connections between these nodes at consecutive time steps. Then, the Goal Graph
is analysed at each time step to recognise those partially or fully achieved goals that are
consistent with the actions observed so far. The Goal Graph analysis also reveals valid
plans for the recognised goals or part of these goals.

Our approach to goal recognition does not need a plan library. It does not suffer from
the problems in the acquisition and hand-coding of large plan libraries, neither does it have
the problems in searching the plan space of exponential size. We describe two algorithms
for Goal Graph construction and analysis in this paradigm. These algorithms are both
provably sound, polynomial-time, and polynomial-space. The number of goals recognised
by our algorithms is usually very small after a sequence of observed actions has been
processed. Thus the sequence of observed actions is well explained by the recognised goals
with little ambiguity. We have evaluated these algorithms in the UNIX domain, in which
excellent performance has been achieved in terms of accuracy, efficiency, and scalability.

1. Introduction

Plan recognition involves inferring the intentions of an agent from a set of observations. A
typical approach to plan recognition uses an explicit representation of possible plans and
goals, often called a plan library, and conducts some type of reasoning on the basis of a set
of observations to identify plans and goals from the plan library, that could have caused the
observations.

Plan recognition is useful in many areas, including discourse analysis in natural lan-
guage question-answering systems, story understanding, intelligent user interfaces, and
multi-agent coordination. Much early research in plan recognition has been done in nat-
ural language question-answering systems (Allen & Perrault, 1980; Allen, 1983; Sidner,
1985; Litman & Allen, 1987; Carberry, 1988; Pollack, 1990; Grosz & Sidner, 1990). In
these systems, plan recognition has been used to support intelligent response generation; to
understand sentence fragments, ellipsis and indirect speech acts; to track a speaker’s flow
through a discourse; and to deal with correctness and completeness discrepancies between
the knowledge of users and systems.

Plan recognition can enhance user interfaces. The recognition of the user’s goals and
plans from his interaction with the interface facilitates intelligent user help (Carver, Lesser,
& McCue, 1984; Huff & Lesser, 1988; Goodman & Litman, 1992; Bauer & Paul, 1993;
Lesh & Etzioni, 1995). Plan recognition enables the interface to assist the user in task

c©2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



Hong

completion, and error detection and recovery (Wilensky & et al., 1988). The interface does
this by watching over the user’s shoulder to infer his goals and plans. It can then decide
what help and assistance the user needs.

In story understanding (Schank & Abelson, 1977; Wilensky, 1983; Charniak & Goldman,
1993), it is useful to recognise the goals and plans of the characters from the described
actions in order to understand what the characters were doing. In multi-agent coordination,
efficient and effective coordination among multiple agents requires modelling each agent’s
goals and plans (Huber, Durfee, & Wellman, 1994; Huber & Durfee, 1995).

Given a set of observations, most plan recognition systems (Allen & Perrault, 1980;
Carberry, 1986; Litman & Allen, 1987; Kautz, 1987; Pollack, 1990)) search a space of
possible plan hypotheses for candidate plans and goals that account for the observations.
To form the search space in a given domain, some kind of plan library is required. For
instance, in Kautz’s event hierarchy (Kautz, 1987), plan decompositions are required that
describe how low-level actions make up complex actions. Despite its obvious advantage of
expressive richness, use of a plan library has a few limitations. First, it is not able to deal
with new plans whose types do not appear in the plan library. Second, acquiring and hand-
coding the plan library in a large and complex domain presents a tedious or impractical task.
Third, in some other domains, the knowledge about plans might not be readily available.

Some attempts (Mooney, 1990; Forbes, Huang, Kanazawa, & Russell, 1995; Lesh &
Etzioni, 1996; Albrecht, Zukerman, & Nicholson, 1998; Bauer, 1998) have recently been
made to apply machine learning techniques to the automated acquisition and coding of plan
libraries. Even when leaving aside the plan library consideration, searching the plan space
can, however, be exponentially expensive because the number of possible plan hypotheses
can be exponential in the number of actions (Kautz, 1987). Most plan recognition systems
have been developed in domains in which people’s behaviour is characterized by fewer than
100 plans and goals (Lesh & Etzioni, 1996).

In this paper, we focus on goal recognition, a special case of plan recognition. We
introduce a novel approach to goal recognition, in which graph construction and analysis is
used as a paradigm. Our approach significantly differs from most plan recognition systems.
First, our approach does not need a plan library. Instead we define what constitutes a valid
plan for a goal. We need to consider only how observed actions can be organised into plans.
Hence we do not have the problems associated with the acquisition and hand-coding of the
plan library in a large and complex domain as well as the availability of planning knowledge
in a domain. Most plan recognition systems cannot recognise any new plans whose types do
not appear in the plan library. Without using a plan library, our approach does not suffer
from this limitation. Second, instead of immediately searching for a plan in the plan space
as in most plan recognition systems, our approach explicitly constructs a graph structure,
called a Goal Graph, which is then analysed to recognise goals and plans. Our approach
therefore does not have the problems in searching the plan space of exponential size. Third,
our approach recognises only partially or fully achieved goals that are consistent with the
actions observed so far. The number of such recognised goals is usually very small after a
sequence of observed actions has been processed. Thus the sequence of observed actions is
well explained by the recognised goals with little ambiguity.

It should be emphasised that in our approach to goal recognition, the purpose of re-
cognising partially or fully achieved goals is to explain past actions rather than predicting

2



Goal Recognition through Goal Graph Analysis

future actions. This is particularly useful in such problem areas as story understanding,
software advisory systems, database query optimisation, and customer data mining. These
problem areas have several specific characteristics. First, most actions have been either de-
scribed or observed. Second, it is very likely that the user’s intended goal has been partially
or fully achieved by these actions. Third, recognising the intended goal aims at explain-
ing past actions rather than predicting future actions. Finally, distinguishing partially or
fully achieved goals from the others greatly reduces ambiguity involved in recognising the
intended goal.

In story understanding, most actions of the characters are described in the story. Recog-
nising goals and plans that account for the described actions enables better understanding
of what the characters were doing. In software advisory systems, after a user has been
observed to issue a sequence of operations in a software application, the system can first
recognise the task the user has performed. The system can then decide whether the user
has performed the task in a suboptimal way, and advice can be given to the user as to
how to better perform the task. In database query optimisation, after a user has conduc-
ted a sequence of data retrieval and manipulation operations, recognising the underlying
query can lead to advice on query optimisation when the query has not been executed in
an optimal way. In customer data mining, the individual customer’s shopping goals can
be recognised from logged customer on-line shopping data. This can also form a basis for
performing other customer data mining tasks.

Our algorithms for Goal Graph construction and analysis are both provably sound,
polynomial-time, and polynomial-space. Our empirical results in the UNIX domain show
that our algorithms perform well in terms of accuracy, efficiency, and scalability. They also
show that our algorithms can be scaled up and applied to domains in which there are tens
of thousands of possible goals and plans. Though our algorithm for Goal Graph analysis
is not complete, it recognised every goal that was intended and successfully achieved by
the subject in the UNIX data set we used in our evaluation. Since our new graph-based
approach to goal recognition is fundamentally different from the existing methods for plan
recognition, it provides an alternative to these methods and a new perspective on the plan
recognition problem.

The rest of the paper is organised as follows. First, we give an overview of our novel
approach to goal recognition. In Section 3, we discuss the domain representation. In
Section 4 we define Goal Graphs, valid plans, and consistent goals. In Section 5 we present
our goal recognition algorithms together with our analysis of these algorithms. In Section 6
we discuss the empirical results. We summarise the paper and discuss limitations and future
work in the last section.

2. A Novel Approach to Goal Recognition

In this section, we describe the basic assumptions we make on the goal recognition problem
and outline our approach. We discuss previous work on planning with Planning Graphs
and a graph-based approach to goal recognition. We briefly describe empirical results that
are in favour of our approach.

3



Hong

2.1 Basic Assumptions

We start with an example in the UNIX domain. When we observe that a user types two
commands, cd papers and ls, one after another, we should be able to infer that the user
wants to find a file or subdirectory in the directory, papers, for two reasons. First, this goal
has been fully achieved. Second, it is relevant to both commands in a consistent way in
the sense that the first command satisfies one of the preconditions of the second command
and the second command achieves the recognised goal. The recognised goal might be just
an intermediate goal of the user. The user’s intended goal might be one of the file related
goals, for instance, deleting a file from the directory. Since these commands can both be
part of plans for almost all the file related goals, it is impossible for us to uniquely identify
the user’s intended goal at the current time step. Yet the goal of finding a file or directory
well explains these commands. If the user next types a command, rm oldpaper.tex, we
can then infer that the user’s goal is to delete a file, oldpaper.tex, in the directory, papers,
because this goal is now fully achieved and it is relevant to all the commands observed so
far in a consistent way in the sense that the first command satisfies one of the preconditions
of the second and third commands, the second command satisfies one of the preconditions
of the third command, and the third command achieves the recognised goal.

This example highlights the way our new approach to goal recognition works. We make
the following assumptions on the goal recognition problem. First, a set of actions are
observed at consecutive time steps.1 Second, the initial state of the world immediately
before the set of actions are observed is known.2 Third, we have domain knowledge on
actions and goals, that is, we know the preconditions and effects of every observed action,
and every possible goal is explicitly specified by a set of goal descriptions.

Given these assumptions, when an action is observed at a time step, we want to infer
which goals have been partially or fully achieved at this time step and whether each of the
achieved goals is relevant to the strict majority of the actions observed so far in a consistent
way in the sense that these actions can be organised into a plan structure for the goal or
part of it.

2.2 Goal Recognition with Goal Graph

We propose to use a graph structure, called a Goal Graph, in our new approach to goal
recognition. We view the goal recognition problem as a process of graph construction and
analysis. In a Goal Graph, action nodes represent the actions observed at consecutive time
steps; proposition nodes represent the state of the world at consecutive time steps, as it is
changed from the initial state to the subsequent states by the observed actions; and goal
nodes represent the goals that are partially or fully achieved at consecutive time steps.
Edges in a Goal Graph explicitly represent relations between actions and propositions as
well as relations between propositions and goals. Based on these explicit relations in the
constructed Goal Graph, causal links between either two actions or an action and a goal
can be recognised. Having recognised these causal links, it can be decided whether a fully
or partially achieved goal at a time step is relevant to the strict majority of the observed

1. The observed actions can be partially ordered in the sense that more than one action can be observed
at a time step and there is no temporal ordering constraint on these actions.

2. Our approach however reasons about the state of the world at subsequent time steps.

4



Goal Recognition through Goal Graph Analysis

actions so far in a consistent way in the sense that these relevant actions can be organised
into a plan structure for the goal or part of it. In our approach, extraneous, redundant, and
partially ordered actions in plans are all handled.

Our attempt to use graph construction and analysis as a paradigm for goal recognition
is in spirit influenced by Blum and Furst’s efforts on planning with Planning Graphs (Blum
& Furst, 1997). They introduced a new graph-based approach to planning in STRIPS
domains, in which a graph structure called a Planning Graph is first constructed explicitly
rather than searching immediately for a plan as in standard planning methods. Many useful
constraints inherent in the planning problem are made explicitly available in a Planning
Graph to reduce the amount of search needed. The Planning Graph is then analysed to
generate possible plans.

Our Goal-Graph-based approach to goal recognition can be seen as a counterpart of
planning with Planning Graph. Though graph structures are used in both approaches,
they are composed of different kinds of nodes and edges. In a time step, a Planning Graph
represents all the possible propositions either added by the actions in the previous time step
or brought forward by maintenance actions from the previous time step, and all the possible
actions whose preconditions have been satisfied by the propositions in the time step. On the
other hand, a Goal Graph, in a time step, represents only the propositions either added by
the actions observed in the previous time step or brought forward by maintenance actions
from the previous time step, and the actions observed in the time step. In addition, a Goal
Graph, in a time step, also represents all the possible goals, either fully or partially achieved
in the time step, while a Planning Graph does not represent any goal at all. Accordingly,
a Planning Graph represents only relations between actions and propositions, while a Goal
Graph also represents relations between propositions and goals.

The analysis of a Planning Graph aims to search for all the possible subgraphs of the
Planning Graph, that form valid plans for the only given goal. On the other hand, the
analysis of a Goal Graph aims to search for every possible partially or fully goal for which
there exists a subgraph of the Goal Graph, consisting of the strict majority of the observed
actions. Such a subgraph forms a valid plan for the goal or part of it and shows that the
strict majority of the observed actions are relevant to the goal in a consistent way.

The domain representation can be the same for both planning with Planning Graph
and goal recognition with Goal Graph. In this regard, previous efforts on handling more
expressive representation languages (Gazen & Knoblock, 1997; Anderson, Smith, & Weld,
1998; Koehler, Nebel, Hoffmann, & Dimopoulos, 1997) are still useful for goal recognition.
These languages allow use of disjunctive preconditions, conditional effects, and universally
quantified preconditions (goal descriptions) and effects in action and goal representation.
Our ADL-like domain representation is actually based on this work, that allows use of
conditional effects, universally quantified effects, and existentially and universally quantified
preconditions and goal descriptions in the action and goal representation.

Our Goal-Graph-based approach further extends Lesh and Etzioni’s previous work on
use of a graph representation of actions and goals for the goal recognition problem (Lesh &
Etzioni, 1995). They used a graph representation, called a consistency graph, for the goal
recognition problem. A consistency graph consists of action and goal nodes representing
possible actions and goals, and edges representing possible connections between nodes in

5



Hong

the graph. Initially, action and goal nodes are fully connected to each other in a consistency
graph, and inconsistent goals are then repeatedly pruned from the consistency graph.

There are a number of major differences between Lesh and Etzioni’s approach and ours.
First, two different graph representations are used. Apart from action and goal nodes, a
consistency graph does not have nodes representing the propositions that model how the
state of the world is changed by the observed actions. Therefore, the consistency graph
does not explicitly reveal causal links over actions and goals. Neither does their system
know whether a goal has been partially or fully achieved by the observed actions. Our Goal
Graph consists of action, goal, and proposition nodes. It explicitly reveals causal links over
actions and goals, hence our system knows how the observed actions are composed into
valid plans for the recognised goals or part of these goals. Our systems also knows whether
a goal is partially or fully achieved by the observed actions.

Second, goal consistency is defined differently. In Lesh and Etzioni’s approach, a goal
is consistent if there exists a plan that includes the observed actions and achieves the
goal. In our approach, a goal is consistent if it has been partially or fully achieved by the
observed actions and is relevant to the strict majority of the observed actions. Also, two
different recognition processes are used. In their approach a pruning process is used to
prune inconsistent goals from the consistency graph. The pruning process guarantees that
the goals pruned from the consistency graph are inconsistent goals. However, the number of
consistent goals, still remaining in the consistency graph after pruning, is usually large. Thus
ambiguity on the intended goal remains an issue to be addressed. Our approach instead
uses a graph analysis process to directly recognise consistent goals from only those fully or
partially achieved goals. The number of consistent goals recognised in the Goal Graph is
usually small. Third, their approach requires that every observed action is relevant to the
goal, while only the strict majority of the observed actions are required to be relevant to
the goal in our approach.

We have developed two algorithms, GoalGraphConstructor and GoalGraphAnalyser,
based on our two-stage paradigm of Goal Graph construction and analysis. The Goal-
GraphConstructor algorithm takes a set of actions as they are observed at different time
steps and constructs a Goal Graph. The GoalGraphAnalyser algorithm analyses the con-
structed Goal Graph to recognise consistent goals and valid plans. We prove that our
algorithms are sound, polynomial-time, and polynomial-space.

Our algorithms have been implemented in Prolog and tested in the UNIX domain on a
desktop with a Pentium III processor at 600 MHz. We used a set of data, collected in the
UNIX domain at the University of Washington, with a domain representation of 35 action
schemata and 249 goal schemata. On the entireUNIX data set, on average it took just a few
CPU seconds to update the Goal Graph when an observed action was processed, and usually
only a very small number of consistent goals remained after a sequence of actions had been
observed. In all those test cases where the intended goals had been successfully achieved
by the subjects, these intended goals were all among the remaining goals recognised after
complete sequences of actions had been observed. To test the scalability of our algorithms,
we tested them on a series of spaces of approximate 104, 2× 104, up to 105 candidate goals
respectively in the UNIX domain, where the approximate linear time performance has been
achieved. Our empirical results show that our algorithms can be scaled up and applied to
domains in which there are tens of thousands of possible goals and plans.

6



Goal Recognition through Goal Graph Analysis

3. The Domain Representation

We use an ADL-like representation (Pednault, 1989), including actions with conditional and
universally quantified effects, and existentially as well as universally quantified preconditions
and goal descriptions. In our approach to goal recognition, a goal recognition problem
consists of

• A set of action schemata specifying primitive actions.

• A finite, dynamic universe of typed objects where objects can be either added or
deleted by an action.

• A set of propositions called the Initial Conditions.

• A set of goal schemata specifying possible goals.

• A set of actions that are observed at consecutive time steps.3

The solution to a goal recognition problem consists of a set of partially or fully achieved
goals that are consistent with the set of observed actions together with the valid plans
consisting of observed actions for the recognised goals or part of them.

The goal schema consists of a set of goal descriptions (GDs) that are defined by the
following EBNF definitions.

<GD> ::= <term>
<GD> ::= (not <term>)
<GD> ::= (neg <term>)
<GD> ::= (and <GD>*)
<GD> ::= (imply <GD> <GD>)
<GD> ::= (exist <term> <GD>)
<GD> ::= (forall <term> <GD>)
<GD> ::= (eq <argument> <argument>)
<GD> ::= (neq <argument> <argument>)

The action schema consists of a set of preconditions and a set of effects. The set of
preconditions are defined as the same as goal descriptions. The set of effects are defined by
the following EBNF definitions.

<effect> ::= <term>
<effect> ::= (neg <term>)
<effect> ::= (and <effect>*)
<effect> ::= (when <GD> <effect>)
<effect> ::= (forall <term> <effect>)

3. When we say an observed action, we mean an action that has been observed and successfully executed.
We ignore those invalid actions. In the UNIX domain, for instance, these invalid actions are those issued
commands that UNIX failed to execute and responded only in error messages.

7



Hong

In the above two sets of EBNF definitions, a <term> is an atomic expression of the form:

<term> ::= (<predicate-name> <argument>*)
<argument> ::= <constant-name>
<argument> ::= <variable-name>

We use eq and neq to specify equality and inequality constraints. We have two negation
connectives: neg and not. We use (neg A) to specifically mean that the truth value of A is
made explicitly known to be false by an action. We use (not A) to mean that the truth value
of A is known to be false either explicitly or implicitly. The latter kind of representation can
be used when it is not necessary to represent that the truth value of A is explicitly known
to be false as long as it is known to be false. The closed world assumption is therefore
implemented as follows. In the initial state of the world, we explicitly represent only the
propositions known to be true in the Initial Conditions. Any proposition not explicitly
represented in the state of the world is implicitly known to be false. Actions however may
add some propositions explicitly known to be false to the state of the world. A proposition
can become explicitly known to be false only if it has been made explicitly known to be
false by an action. It is important to represent the propositions that are explicitly known
to be false, because we want to explicitly represent the effects of actions so that causal links
between either two actions or an action and a goal can be established.

Both goal and action schemata are parameterised by typed variables that are represented
by terms with object type predicates. A goal is a ground instance of a goal schema. An
action is a ground instance of an action schema. The set of goal descriptions for a goal must
be satisfied in the state of the world when the goal is fully achieved. If some but not all the
goal descriptions are satisfied instead, the goal is partially achieved. Positive literals in the
goal descriptions represent propositions true in the state of the world. Negative literals in
the goal descriptions represent propositions known to be false in the state of the world. We
use imply to specify dependency constraints on goal descriptions. If a goal description GD2

is implied by another goal description GD1, GD2 can only be satisfied when GD1 is satisfied
but GD1 can be satisfied without GD2 being satisfied. A goal description can be existentially
and universally quantified over a dynamic universe of objects.

The set of preconditions must be satisfied in the state of the world before the action
can be executed. The set of preconditions have the same syntax and semantics as the
set of goal descriptions. The set of effects are taken in the state of the world when the
action is executed. Positive literals in the effects represent propositions true in the state
of the world after the action is executed. These propositions are added to the state of the
world. Negative literals in the effects represent propositions no longer true in the state of
the world after the action is executed. These propositions are deleted from the state of
the world, while the negations of these propositions are added to the state of the world,
representing that these propositions are explicitly known to be false in the state of the world
after the action is executed. Furthermore, a conditional effect consists of an antecedent and
a consequent, where the antecedent is a set of preconditions and the consequent is a set
of effects. The effects in the consequent can be taken only when the preconditions in the
antecedent are satisfied in the state of the world before the action is executed. An effect in
an action schema can be universally quantified over a dynamic universe of objects.

8



Goal Recognition through Goal Graph Analysis

We use a simple example domain extended from Pednault’s famous example (Pednault,
1988). It involves transportation of two physical objects, a dictionary, and a chequebook,
between home and office using a briefcase. We assume that only one physical object can be
carried in the briefcase at a time. The extended briefcase domain consists of

• A special physical object: a briefcase.

• Two physical objects: a dictionary and a chequebook.

• Two locations: home and office.

• Three action schemata:

‘Moving the briefcase from one location to another’,
‘Putting a physical object in the briefcase’, and
‘Taking out a physical object from the briefcase’.

• Three goal schemata:

‘Moving a physical object from one location to another’,
‘Keeping a physical object at a location’, and
‘Keeping a physical object in the briefcase’.

The action and goal schemata of this example domain are shown in Figure 1. They are
used throughout the paper.

In the actual implementation of our goal recognition algorithms, universally quantified
preconditions and effects, and conditional effects in action schemata are eliminated; and
equivalent schemata are created. We use a particular approach we call dynamic expansion.
Dynamic expansion involves two steps. In the first step, universally quantified preconditions
and effects in an action schema are dynamically compiled into the corresponding Herbrand
bases, taking into account the universe of objects at the current time step. These universally
quantified preconditions and effects can only be dynamically compiled because we assume
that the universe of objects can be dynamically changed. This assumption is needed in a
domain like the UNIX shell system where destruction and creation of objects are required.
Under our assumption on the dynamic universe of objects, for each object in the universe,
its object type must have been declared at the time step immediately before the action is
executed. For each object in the initial universe of objects, its type must be declared in the
Initial Conditions. An object can be either added to or deleted from the universe of objects
by an action at a time step, with an effect either stating a proposition about the new object
or negating a proposition about the existing object.

For instance, suppose that at the time step immediately before an instance of action
schema mov-b shown in Figure 1 is executed, the universe of objects consists of three physical
objects: B, C, and D. Action schema mov-b is then dynamically compiled into action schema
mov-b-1 as follows.

9



Hong

(:action mov-b
:paras (?l ?m - loc)
:pre (and (neq ?l ?m)(at B ?l))
:eff (and (at B ?m) (neg (at B ?l))

(forall (?z - physob)
(when (in ?z)

(and (at ?z ?m)
(neg (at ?z ?l)))))) )

(:action put-in
:paras (?x - physob ?l loc)
:pre (and (neq ?x B)(at ?x ?l)(at B ?l))

(forall (?z - physob)
(not (in ?z))))

:eff (in ?x) )
(:action take-out

:paras (?x - physob)
:pre (in ?x)
:eff (neg (in ?x)) )

(:goal move-object
:paras (?x - physob ?l ?m - loc)
:goal-des (and (neq ?l ?m)

(neq ?x B)
(imply (neg (at ?x ?l))

(at ?x ?m))) )
(:goal keep-object-at

:paras (?x - physob ?l - loc)
:goal-des (and (neq ?x B)

(imply (at ?x ?l)
(not (in ?x)))) )

(:goal keep-object-in
:paras (?x - physob)
:goal-des (in ?x) )

Figure 1: The action and goal schemata of the extended briefcase domain

10



Goal Recognition through Goal Graph Analysis

(:action mov-b-1
:paras (?l ?m - loc)
:pre (and (neq ?l ?m) (at B ?l))
:eff (and (at B ?m) (neg (at B ?l))

(when (in B)
(and (at B ?m)

(neg (at B ?l))))
(when (in C)

(and (at C ?m)
(neg (at C ?l))))

(when (in D)
(and (at D ?m)

(neg (at D ?l))))) )

In the second step, the conditional effects in mov-b-1 are further eliminated. Assume
that, at this time step, the following propositions are true: (at B H), (at C H), (at D H),
and (in D). Those conditional effects in mov-b-1, whose antecedents are not satisfied at
the time step, are removed. We therefore have action schema mov-b-2.

(:action mov-b-2
:paras (?l ?m - loc)
:pre (and (neq ?l ?m) (at B ?l))
:eff (and (at B ?m) (neg (at B ?l))

(when (in D)
(and (at D ?m)

(neg (at D ?l))))) )

The antecedent of the remaining conditional effect in mov-b-2 is already satisfied at the
time step and it is moved into the existing preconditions. We finally have action schema
mov-b-3 at the current time step. Action schema mov-b-3 is equivalent to the original
action schema mov-b at the current time step. It is mov-b-3 that is actually used for the
action schema, ‘Moving the briefcase from one location to another’, at the time step.

(:action mov-b-3
:paras (?l ?m - loc)
:pre (and (neq ?l ?m) (at B ?l)

(in D))
:eff (and (at B ?m) (neg (at B ?l))

(at D ?m) (neg (at D ?l))))

The universally quantified goal descriptions in a goal schema are treated in the same
way as the universally quantified preconditions in an action schema.

4. Goal Graphs, Valid Plans and Consistent Goals

In this section, we first describe the structure of the Goal Graph. We then define what we
mean when we say a set of observed actions forms a valid plan for achieving a goal given

11



Hong

at D H
at B O

at C H

keep-object-at C H

mov-b O H

at B H
¬ at B O

at D H

at C H

put-in D H

at B H

¬ at B O

at D H

at C H

in D

keep-object-in D*

mov-b H O

¬ at B H

at B O

¬ at D H

at D O

at C H
in D

move-object D H O*

keep-object-in D

keep-object-at D H

Level 1 Level 2 Level 3 Level 4

keep-object-at D H

keep-object-at C H

keep-object-at C H

keep-object-at C H
Goals

Propositions

Actions

keep-object-at D O

Figure 2: A Goal Graph for an example of the extended briefcase domain

the Initial Conditions. We finally define what we mean when we say a goal is consistent
with a set of observed actions.

4.1 Goal Graphs

A Goal Graph represents the actions observed, the propositions true or explicitly known to
be false, and the fully or partially achieved goals at consecutive time steps. A Goal Graph
also explicitly represents connections between propositions, actions, and goals in the graph.

A Goal Graph is a directed, levelled graph. The levels alternate between proposition
levels containing proposition nodes (each labelled with a proposition or negation of a propos-
ition), representing the state of the world at consecutive time steps; goal levels containing
goal nodes (each labelled with a goal), representing goals fully or partially achieved at con-
secutive time steps; and action levels containing action nodes (each labelled with an action),
representing actions observed at consecutive time steps. The levels in a Goal Graph start
with a proposition level at time step 1, consisting of one node for each proposition true
in the Initial Conditions. They end with a goal level at the last time step, consisting of a
node for each of the goals either fully or partially achieved by the actions observed so far.
These levels are: propositions true at time step 1, goals achieved at time step 1, actions
observed at time step 1; propositions true or explicitly known to be false at time step 2,
goals achieved at time step 2, actions observed at time step 2; propositions true or explicitly
known to be false at time step 3, goals achieved at time step 3, and so forth.

The goal nodes in goal-level i are connected by description edges to their goal descrip-
tions in proposition-level i. The action nodes in action-level i are connected by precondition
edges to their preconditions in proposition-level i, and by effect edges to their effects in
proposition-level i + 1. Those proposition nodes in proposition-level i are connected via
persistence edges to the corresponding proposition nodes in proposition-level i+ 1, if their
truth values have not been affected by the actions in action-level i. These persistence edges
represent the effects of maintenance actions that simply bring forward proposition nodes in
proposition-level i, not affected by the actions in action-level i, to proposition-level i + 1.

In the example shown in Figure 2, three actions have been observed at three consec-
utive time steps: (mov-b O H), (put-in D H), and (mov-b H O). The Initial Conditions

12



Goal Recognition through Goal Graph Analysis

consist of: (at B O), (at D H), and (at C H). Action and goal nodes are on the top and
bottom parts of the graph respectively. The proposition nodes are in the middle part of
the graph. The edges connecting proposition nodes and the action node in the same level
are precondition edges. The edges connecting the action node in one level and propositions
in a subsequent level are effect edges. The edges connecting proposition nodes and goal
nodes in the same level are description edges. The edges connecting proposition nodes in
one level to proposition nodes in a subsequent level are persistence edges. The goal nodes
in bold represent consistent goals, among which the goal nodes in italics represent partially
achieved goals, while the others represent fully achieved goals. The edges in bold show
causal link paths. The goal nodes with an asterisk represent the recognised goals.

4.2 Valid Plans

We now define what we mean when we say a set of observed actions forms a valid plan for
a goal, given the Initial Conditions.

Definition 1 (Causal Link) Let ai and aj be two observed actions at time steps i and j

respectively, where i < j. There exists a causal link between ai and aj , written as ai → aj,
if and only if one of the effects of ai satisfies one of the preconditions of aj.

For instance, in the example shown in Figure 2, there exists a causal link between actions
(mov-b O H) at time step 1 and (put-in D H) at time step 2, since one of the effects of
the first action, (at B H), satisfied one of the preconditions of the second action.

A goal can be treated as an action with goal descriptions as its preconditions and an
empty set of effects. Therefore, causal links can also be established from observed actions
to goals.

For instance, in the example shown in Figure 2, there exists a causal link between action
(mov-b H O) at time step 3 and goal (move-object D H O) at time step 4, since one of
the effects of action, (at D O), satisfied one of the goal descriptions of the goal.

Now a valid plan for a goal can be defined on the basis of temporal ordering constraints
and causal links over a set of observed actions. A valid plan P for a goal g, given the Initial
Conditions, is represented as a 3-tuple, < A, O, L >, in which A is a set of observed actions,
O is a set of temporal ordering constraints over A, and L is a set of causal links over A.

Definition 2 (Valid Plan) Let g be a goal, and P =< A, O, L >, where A is a set of
observed actions, O is a set of temporal ordering constraints, {ai < aj}, over A, and L is a
set of causal links, {ai → aj}, over A. Let I be the Initial Conditions. P is a valid plan
for g, given I, if and only if

1. the actions in A can be executed in I in any order consistent with O;

2. the goal g is fully achieved after the actions in A are executed in I in any order
consistent with O.

For instance, in the example shown in Figure 2, given the Initial Conditions, I = {(at
B O), (at D H), (at C H)}, P = ({a1 = (mov-b O H), a2 = (put-in D H), a3 = (mov-b
H O)}, {a1 < a2, a2 < a3}, {a1 → a2, a1 → a3, a2 → a3}) is a valid plan for goal g =
(move-object D H O).

13



Hong

4.3 Consistent Goals

We now define what we mean when we say a goal is consistent with a set of observed
actions. A set of observed actions is represented by a 2-tuple, < A, O >, in which A is a
set of observed actions and O is a set of temporal ordering constraints, {ai < aj}, over A.4

Definition 3 (Relevant Action) Given a goal g and a set of observed actions, < A, O >,
an action a ∈ A is said to be relevant to g in the context of < A, O >, if and only if

1. there exists a causal link, a→ g; or

2. there exists a causal link, a→ b, where b ∈ A is relevant to g and a < b is consistent
with O.

Definition 4 (Consistent Goal) A goal g is consistent with a set of observed actions,
< A, O >, if and only if the strict majority of a ∈ A are relevant to g in the context of
< A, O >.

Proposition 1 (Valid Plan for Consistent Goal) Let < A, O > be a set of observed
actions, I be the Initial Conditions of < A, O >, g be a goal consistent with < A, O >.
There exists a set of causal links, L = {ai → aj}, over A and given I, P =< A, O, L >
is a valid plan for either g when g is fully achieved in the time step after < A, O > has
been observed or the achieved part of g when g is partially achieved in the time step after
< A, O > has been observed.

Proof. When g is fully achieved in the time step after a set of actions has been observed,
it directly follows Definitions 3 and 4 that there exists a set of causal links, L = {ai → aj},
over A. It then follows Definition 2 that given I , P =< A, O, L > is a valid plan for g.

When g is partially achieved in the time step after a set of actions has been observed,
let g′ be the achieved part of g. So g′ is fully achieved in the time step after the set of
actions has been observed, and it directly follows Definitions 2, 3 and 4 that there exists a
set of causal links, L = {ai → aj}, over A and given I , P =< A, O, L > is a valid plan for
g′. 2

For instance, in the example shown in Figure 2, we have < A, O > = < {a1 = (mov-b O
H), a2 = (put-in D H), a3 = (mov-b H O)}, {a1 < a2, a2 < a3} >, and g = (move-object
D H O) is a fully achieved goal in the time step after < A, O > has been observed. According
to Definition 3 and 4, g is consistent with < A, O > because there exist causal links, a3 → g
between a3 and g, a2 → a3 between a2 and a3, a1 → a3 between a1 and a3, and a1 → a2

between a1 and a2. Let I be the Initial Conditions of < A, O >, L = {a1 → a2, a1 → a3,
a2 → a3}, according to Proposition 1, P =< A, O, L > is a valid plan for g. Furthermore,
causal link, a3 → g, explains the purpose of a3.

In summary, according to Definition 4 and Proposition 1, when we say a goal is consistent
with a set of observed actions, we mean that the strict majority of the observed actions are
relevant to the goal and the set of observed actions forms a valid plan for the goal or the
achieved part of it.

4. We assume that actions are observed at consecutive time steps but more than one action can be observed
at a time step.

14



Goal Recognition through Goal Graph Analysis

5. Goal Recognition Algorithms

We now describe our goal recognition algorithms. Our goal recognition algorithms run in a
two-stage cycle at each time step. In the first stage, the GoalGraphConstructor algorithm
takes the actions observed in the time step and tries to extend the Goal Graph. In the second
stage, the GoalGraphAnalyser algorithm analyses the constructed Goal Graph to recognise
those fully or partially achieved goals, that are consistent with the actions observed so far,
and the valid plans for these goals or part of them. This two-stage cycle continues until no
action is observed at the next time step.

5.1 Constructing a Goal Graph

We use a 4-tuple < P, AO, GR, E > to represent a Goal Graph, where P is a set of proposi-
tion nodes, AO is a set of action nodes, GR is a set of goal nodes, and E is a set of edges. A
proposition node is represented by prop(p, i), where p is a positive or negative ground literal,
i is a time step. An action node is represented by action(a, i), where a is an observed action
and i is a time step. A goal node is represented by goal(g, i), where g is a goal and i is a
time step. A precondition edge is represented by precondition-edge(prop(p, i), action(a, i)),
an effect edge is represented by effect-edge(action(a, i), prop(p, i+1)), a description edge is
represented by description-edge(prop(p, i), goal(g, i)), and a persistence edge is represented
by persistence-edge(prop(p, i− 1), prop(p, i)).

The GoalGraphConstructor algorithm consists of two algorithms: the goal expansion
algorithm and the action expansion algorithm. The GoalGraphConstructor algorithm starts
with a Goal Graph, < P, {}, {}, {} >, that consists of only proposition-level 1 with nodes
representing the Initial Conditions.

Given a Goal Graph ending with proposition-level i, the goal expansion algorithm first
extends the Goal Graph to goal-level i, with nodes representing goals fully or partially
achieved at time step i. The algorithm goes through every possible ground instance of goal
schemata. For every goal instance, it first gets a set of goal descriptions. It then eliminates
all the universally quantified goal descriptions by dynamic expansion to get an equivalent
set of goal descriptions. A goal node is added onto goal-level i to represent an achieved
goal, if at least one of its goal descriptions has been satisfied at proposition-level i. It can
then be decided whether a goal is fully or partially achieved, based on whether all or some
of its goal descriptions have been satisfied respectively at proposition-level i. Meanwhile,
if a node in proposition-level i satisfies a goal description, a description edge connecting
the proposition node and the goal node is added onto the Goal Graph. Figure 3 shows the
goal expansion algorithm. The algorithm takes a Goal Graph < P, AO, GR, E > ending
with proposition-level i, time step i, and a set of goal schemata G as input. It returns an
updated Goal Graph ending with goal-level i after the goal expansion.

When actions are observed at time step i, the action expansion algorithm then ex-
tends the Goal Graph ending with goal-level i, to action-level i, with nodes representing
the observed actions. At the same time, the algorithm also extends the Goal Graph to
proposition-level i+ 1, with nodes representing propositions true or explicitly known to be
false after the actions have been observed.

For every action observed at time step i, the algorithm first instantiates an action schema
with the observed action to get a precondition set and an effect set. It then eliminates

15



Hong

Goal-Expansion(< P, AO, GR, E >, i, G)
1. For every Gk ∈ G

For every instance g of Gk

a. Get a set of goal descriptions Sg.
b. Get the equivalent set of Sg, Sg′.
c. For every pg ∈ Sg′, where pg = not(pg′),

If prop(neg(pg′), i) ∈ P , then
Add description-edge(prop(neg(pg′), i), goal(g, i)) to E.

d. For every pg ∈ Sg′, where pg 	= not(pg′),
If prop(pg, i) ∈ P , then
Add description-edge(prop(pg, i), goal(g, i)) to E.

e. If one of the goal descriptions of g is satisfied, then
Add goal(g, i) to GR.

2. Return with < P, AO, GR, E >.

Figure 3: The goal expansion algorithm

all the universally quantified preconditions and effects, as well as conditional effects, by
dynamic expansion to get equivalent precondition and effect sets. Meanwhile, if a node in
proposition-level i satisfies a precondition of the action, a precondition edge, connecting the
proposition node and the action node, is added onto the Goal Graph. For every effect of
the action, the action expansion algorithm simply adds a proposition node representing the
effect to proposition-level i + 1. The effect edge from the action node to the proposition
node is also added onto the Goal Graph.

After the above expansion, every proposition node at proposition-level i is brought
forward to proposition-level i + 1 by a maintenance action, if its truth value has not been
changed by an action observed at time step i (and it has not been added onto the Goal Graph
by an action observed at time step i).5 Persistence edges, connecting the corresponding
proposition nodes at the two proposition levels, are added onto the Goal Graph.

Figure 4 shows the action expansion algorithm. The algorithm takes a Goal Graph
< P, AO, GR, E > ending with goal-level i, the set of actions observed at time step i, Ai,
time step i, and a set of action schemata A as input. It returns an updated Goal Graph
ending with proposition-level i + 1 after the action expansion. The expansion of the Goal
Graph from proposition-level i to proposition-level i + 1 simulates the effects of executing
the actions observed at time step i.

If otherwise there is no action observed at time step i, the GoalGraphConstructor al-
gorithm finishes with nodes in goal-level i, representing all the possible goals either fully or
partially achieved after all these actions have been observed.

5. Our goal recognition algorithms allow redundant actions.

16



Goal Recognition through Goal Graph Analysis

Action-Expansion(< P, AO, GR, E >, Ai, i, A)
1. For every ai ∈ Ai

a. Add action(ai, i) to AO.
b. Instantiate an action schema in A with ai to get a precondition set

SP , and an effect set SE.
c. Get the equivalent sets of SP and SE, SP ′ and SE ′.
d. For every pp ∈ SP ′, where pp = not(pp′),

If prop(neg(pp′, i) ∈ P , then
Add precondition-edge(prop(neg(pp′, i), action(ai, i)) to E.

e. For every pp ∈ SP ′, where pp 	= not(pp′),
If prop(pp, i) ∈ P , then
Add precondition-edge(prop(pp, i), action(ai, i)) to E.

f. For every pe ∈ SE

i. Add prop(pe, i+ 1) to P .
ii. Add effect-edge(action(ai, prop(pe, i+ 1)) to E.

2. For every prop(p, i) ∈ P
If prop(¬p, i+ 1) /∈ P , then
If prop(p, i+ 1) /∈ P , then Add prop(p, i+ 1) to P ;
Add persistence-edge(prop(p, i), prop(p, i+ 1)) to E.

3. Return with < P, AO, GR, E >.

Figure 4: The action expansion algorithm

Theorem 1 (Polynomial Size and Time) Consider a goal recognition problem with s
observed actions in t time steps, a finite number of objects at each time step, p propositions
in the Initial Conditions, and m goal schemata each having a constant number of parameters.
Let l1 be the largest number of effects of any action schema, and l2 be the largest number
of goal descriptions of any goal schema. Let n be the largest number of objects at all time
steps. Then, the size of the Goal Graph of t+1 levels created by the GoalGraphConstructor
algorithm, and the time needed to create the graph, are polynomial in n, m, p, l1, l2, and s.

Proof. The maximum number of nodes in any proposition level is O(p + l1s). Let k
be the largest number of parameters in any goal schema. Since any goal schema can be
instantiated in at most nk distinct ways, the maximum numbers of nodes and edges in any
goal level are O(mnk) and O(l2mnk) respectively. It is obvious that the time needed to
create both nodes and edges in any level is polynomial in the number of nodes and edges
in the level. 2

Theorem 2 The GoalGraphConstructor algorithm is sound: Any goal it adds to the Goal
Graph at time step i is one either fully or partially achieved at time step i in the state of the
world. The algorithm is complete: If a goal has been either fully or partially achieved by the
observed actions up to time step i− 1, then the algorithm will add it to the Goal Graph at
time step i, under the assumption that all the possible goals are restricted to the categories
of goal schemata.

17



Hong

Proof (soundness). Proposition-level 1 of the Goal Graph consists of only the Initial
Conditions, representing the state of the world at time step 1 before any action has been
observed. The Goal Graph is extended from proposition-level i−1 to proposition-level i, by
adding only the effects of the actions observed at time step i−1, and bringing forward all the
other proposition nodes that have not been affected by these actions from proposition-level
i− 1 to proposition-level i. Therefore, proposition-level i of the Goal Graph represents the
state of the world at time step i, that has been changed from the Initial Conditions after
the actions have been observed at time steps 1, ..., i −1.

A goal added to the Goal Graph at time step i by the algorithm is a fully or partially
achieved goal in proposition-level i of the Goal Graph. Therefore, it is a goal that is fully
or partially achieved in the state of the world at time step i.

Proof (completeness). Suppose a goal has been either fully or partially achieved by the
actions observed at time steps 1, ..., i −1. This goal is then either fully or partially achieved
in proposition-level i of the Goal Graph. Since goal-level i of the Goal Graph consists
of all the possible instances of the goal schemata, that are fully or partially achieved in
proposition-level i of the Goal Graph, and the goal is an instance of a goal schema, it is one
of the fully or partially achieved goal instances in proposition-level i. The algorithm will
therefore add the goal to goal-level i in the Goal Graph. 2

5.2 Recognising Consistent Goals and Valid Plans

The GoalGraphAnalyser algorithm analyses the constructed Goal Graph to recognise con-
sistent goals and valid plans. We assume that the strict majority of the observed actions are
relevant to the goal intended by the agent in the context of the agent’s actions. Therefore,
the goal intended by the agent is consistent with the set of observed actions, and a goal
may be the intended goal if it is consistent with the set of observed actions. In order to
decide whether a goal is consistent with a set of observed actions, that is, whether it is
relevant to the strict majority of the observed actions, we need to recognise causal links
between either two observed actions or an observed action and the goal. We now define
two particular types of paths, we call causal link paths, in the constructed Goal Graph. We
prove in Theorems 3 and 4 that causal links can be recognised by identifying causal link
paths.

Definition 5 Given a Goal Graph, let ai be an action observed at time step i and gj be a
goal fully or partially achieved in time step j, where i < j. A path that connects ai to gj

via an effect edge, zero or more persistence edges, and a description edge, is called a causal
link path between ai and gj.

Theorem 3 Given a Goal Graph, there exists a causal link, ai → gj, between an action ai

at time step i and a goal gj at time step j, where i < j, if ai is connected to gj via a causal
link path.

Proof. According to Definition 5, a causal link path between ai and gj consists of an
effect edge, zero or more persistence edges, and a description edge. The effect edge on the
path connects ai to a proposition node in proposition-level i + 1, representing one of the
effects of ai. When j = i+ 1, there is no persistence-edge on the path and this proposition

18



Goal Recognition through Goal Graph Analysis

node is connected to gj by a description edge. When j > i + 1, this proposition node is
brought forward to proposition-level j via j−i−1 persistence-edges by j−i−1 maintenance
actions, and the brought-forward proposition node in proposition-level j is connected to gj

by a description edge. In either case, one of the effects of ai satisfied one of the goal
descriptions of gj. Since a goal can be treated as an action with the goal descriptions as the
preconditions and an empty set of effects, according to Definition 1, there exists a causal
link between ai and gj. 2

Definition 6 Given a Goal Graph, let ai and aj be two actions observed at time steps i
and j respectively, where i < j. A path that connects ai to aj via an effect edge, zero or
more persistence edges, and a precondition-edge, is called a causal link path between ai and
aj.

Theorem 4 Given a Goal Graph, there exist a causal link, ai → aj, between an action ai

at time step i and an action aj at time step j, where i < j, if ai is connected to aj via a
causal link path.

The proof of Theorem 4 is similar to Theorem 3. The details of the proof are omitted.
Given a constructed Goal Graph < P, AO, GR, E > of t levels, the GoalGraphAnalyser

algorithm shown in Figure 5 recognises every consistent goal from the goals in goal-level t,
by deciding whether the strict majority of the observed actions are relevant to it. This is
done by first finding those relevant actions from the observed actions, that are connected to
the goal by causal link paths. For each of the already-known relevant actions, the algorithm
tries to find more relevant actions from the observed actions, that are connected to it by
causal link paths. This continues until no more relevant action is found. The consistent
goal recognised and the valid plan for the goal or part of it are represented by a 3-tuple,
< gt, < AO, O, La >, Lg >, where gt is the goal, La is a set of causal links over the observed
actions, and Lg is a set of causal links between some of the observed actions and the goal.
< AO, O, La > represents a valid plan for gt or part of it, and Lg further explains the
purposes of some of the observed actions.

Proposition 2 The GoalGraphAnalyser algorithm is sound: Any goal g it recognises at
time step t is consistent with the observed actions so far, and the plan it organises for g or
part of g is valid.

Proof. The GoalGraphAnalyser algorithm recognises a goal g at time step t, when the
strict majority of the observed actions are connected to g, either directly by a causal link
path or indirectly by a chain of causal link paths. When an observed action is connected
to g directly by a causal link path, according to Theorem 3 and Definition 3, there exists
a causal link between the observed action and g, and the observed action is relevant to
g. When an observed action is connected to g indirectly by a chain of causal link paths,
according to Theorem 3, Theorem 4, and Definition 3, there is a chain of causal links
between the observed action and g, and the observed action is relevant to g. Since the strict
majority of the observed actions are relevant to g, according to Definition 4, g is consistent
with the set of observed actions. Furthermore, according to Proposition 1, the plan the
GoalGraphAnalyser algorithm organises for g or part of g, < AO, O, La >, is a valid plan.2

19



Hong

GoalGraphAnalyser(< P, AO, GR, E >, t)
1. For every gt ∈ GR in goal-level t

a. AO′ ← {}, A← {}, Lg ← {}, La ← {}.
b. For every ai ∈ AO connected to gt by a causal link path

Add ai → gt to Lg; and
Add ai to AO′; and
Add ai to A.

c. If A = {} and for most of ai ∈ AO, ai ∈ AO′, then
Get all the ordering constraints, O, over AO; and
Add < gt, < AO, O, La >, Lg > to GoalPlan.

d. If A 	= {}, then
Remove an action aj from A; and
For every ai ∈ AO connected to aj by a causal link path
Add ai → aj to La; and
If ai /∈ AO′, then Add ai to AO′, ai to A; and

Go to 1c.
2. Return with GoalPlan.

Figure 5: The GoalGraphAnalyser algorithm

In the example shown in Figure 2, the goal nodes in bold represent three consistent
goals, among which the goal node in italics represents a partially achieved goal, while the
other two represent two fully achieved goals. The edges in bold show causal link paths.

Theorem 5 (Polynomial Space and Time) Consider a t-level Goal Graph. Let l1 be
the number of fully or partially achieved goals at time step t, m1 be the largest number of
goal descriptions in any of these goals, l2 be the number of the observed actions, and m2

be the largest number of preconditions in any of these actions. The space size of possible
causal link paths, that connect the goals to the observed actions and that connect the observed
actions to other observed actions, and the time needed to recognise all the consistent goals,
are polynomial in l1, l2, m1, and m2.

Proof. Persistence edges do not branch in a Goal Graph. For each of the goals in
goal-level t, the maximum number of paths searched for those observed actions, that are
connected to the goal by causal link paths and hence relevant to it, is O(m1). For each of
the relevant actions to the goal, the maximum number of paths searched for those observed
actions, that are connected to the relevant action by causal link paths and hence also
relevant to the goal, is O(m2). There are at maximum only l1 goals in goal-level t and
l2 relevant actions to any of these goals. So the space size of possible causal link paths is
O(l1(m1 + l2m2)). The time needed to recognise all the consistent goals is polynomial in
the space size. 2

20



Goal Recognition through Goal Graph Analysis

5.3 Goal Redundancy

The GoalGraphAnalyser algorithm recognises fully or partially achieved goals at a time step,
that are consistent with the actions observed so far. Among these consistent goals, fully
achieved goals better explain the actions observed so far. For instance, in the example shown
in Figure 2, two consistent goals are recognised by the GoalGraphAnalyser algorithm at time
step 4: (move-object D H O) is fully achieved and (keep-object-at D O) is partially
achieved. Between these two consistent goals, the fully achieved goal better explains the
observed actions so far. If, for instance, another action (take-out D) is observed at next
time step, (keep-object-at D O) becomes fully achieved and remains consistent with the
observed actions. So at that time step, it best explains the observed actions. A partially
achieved goal, that is consistent with the observed actions so far, can remain consistent
when more actions are observed in the future and becomes fully achieved. So choosing the
fully achieved goal and making the partially achieved goal redundant does not rule out the
possibility of the partially achieved goal remaining consistent and becoming fully achieved
in the future. Based on this principle, we can make a partially achieved consistent goal
at a time step redundant, if its satisfied goal descriptions are implied by the satisfied goal
descriptions of another fully or partially achieved consistent goal.

Definition 7 A partially achieved consistent goal at a time step is redundant, if the set of
its satisfied goal descriptions is either a subset of the goal descriptions of a fully achieved con-
sistent goal or a proper subset of the satisfied goal descriptions of another partially achieved
consistent goal at the same time step.

For instance, at time step 4 the set of satisfied goal descriptions of (keep-object-at D
O) is a subset of the goal descriptions of (move-object D H O). The partial achievement
of (keep-object-at D O) has been implied by the full achievement of (move-object D H
O). So (keep-object-at D O) is made redundant by (move-object D H O) at time step
4.

A fully achieved consistent goal at a time step, however, can be made redundant only if
its goal descriptions are implied by the goal descriptions of another fully achieved consistent
goal at the same time step.

Definition 8 A fully achieved consistent goal at a time step is redundant, if the set of its
goal descriptions is a subset of the goal descriptions of another fully achieved consistent goal
at the same time step.

5.4 The Most Consistent Goals

After all the redundant goals have been removed from the set of consistent goals at a time
step, there might still be more than one consistent goal in the set. If this is the case, the
numbers of observed actions that are relevant to these remaining consistent goals will be
compared. Those remaining goals that have the maximum number of relevant actions will
be chosen as the most consistent goals at the time step.

Definition 9 Given a set of consistent goals at a time step, a consistent goal in the set is
the most consistent goal in the set, if it has the maximum number of relevant actions among
all the consistent goals in the set.

21



Hong

For instance, in the example shown in Figure 2, if another action (take-out D) is
observed at time step 4, both (move-object D H O) and (keep-object-at D O) are con-
sistent goals at time step 5, and neither of them is redundant. (keep-object-at D O)
is relevant to all the five observed actions, while (move-object D H O) is relevant to only
four of the observed actions. According to Definition 9, (keep-object-at D O) is the most
consistent goal at time step 5.

In the example shown in Figure 2, the goal nodes with an asterisk represent the consistent
goals eventually remaining after the two processes of removing redundant goals and selecting
the most consistent goals.

6. Experimental Results

We implemented our goal recognition algorithms in Prolog and tested them in terms of
accuracy, efficiency, and scalability on a desktop with a Pentium III processor at 600 MHz.
We tested our algorithms on a set of data in the UNIX domain collected at the University
of Washington. To collect the data, the subjects were given goals described in English first
and they then tried to achieve each goal by executing UNIX commands. The commands
issued to UNIX by the subject and the responses from UNIX to these commands were
recorded in the data set. Some of the commands issued by the subject were not valid and
could not be executed in UNIX. So the responses from UNIX to these invalid commands
were actually error messages. For each of the goals the subjects tried to achieve, they
indicated success or failure with regard to the achievement of the goal.

There are 14 goals in the UNIX data set, and each of these goals was tried by 5 subjects
on average. As shown in Table 1, these goals can be classified into four types. The first type
of goals are those of locating a file that has some of the properties, such as extension, size,
contents, ownership, date, word count, and compression. The second type of goals are those
of locating a machine that has some of the properties, such as load and logged-in users. The
third type of goals are those of locating a printer that has some of the properties, such as
print jobs and out of paper. The fourth type of goals are those of compressing all or large
files in a directory. For the fourth type of goals, universally quantified goal descriptions
are needed in the corresponding goal schemata. In addition, there are also two compound
goals, G3 and G9, that are the conjunctions of two goals of the second type.

To test our algorithms, the sequences of UNIX commands, recorded in the data set, were
taken as the observed actions at consecutive time steps. We took only the valid commands,
that were successfully executed in UNIX, and filtered out the invalid commands, that
UNIX failed to execute and responded only in the error messages. We created 35 action
schemata for a set of commonly used UNIX commands, including those executed by the
subjects. We also created 249 goal schemata, including 129 file-search goal schemata (for
goals of locating a file that has some properties), 15 non-file-search goal schemata (for goals
of locating a machine or a printer that has some properties and goals of compressing all
or large files in a directory) and 105 goal schemata of paired non-file-search goals. The
14 goals in the UNIX data set are the instances of some of these goal schemata. We first
tested our algorithms with respect to accuracy and efficiency, that is, the number of goals
remaining after a sequence of observed actions has been processed, and the average time

22



Goal Recognition through Goal Graph Analysis

G1 Find a file named ‘core’.
G2 Find a file that contains ‘motivating’ and whose name ends in ‘.tex’.
G3 Find a machine that has low (< 1.0) load; and

determine if Oren Etzioni is logged into the machine named chum.
G4 Compress all large (> 10,000 bytes) files in the Testgrounds subdirectory tree.
G5 Compress all files in the directory named ‘backups’ [Don’t use *].
G6 Find a large file (> 100,000 bytes) that hasn’t been changed for over a month.
G7 Find a file that contains less than 20 words.
G8 Find a laser printer in Sieg Hall that has an active print job.
G9 Find a Sun on the fourth floor that has low (< 1.0) load;

and determine if Dan Weld is active on the machine named chum.
G10 Find a printer that is out of paper.
G11 Find a file named oldpaper in ∼neal/Testgrounds subdirectory.
G12 Find a file of length 4 in ∼neal/Testgrounds subdirectory.
G13 See if Dan Weld is logged into chum.
G14 Find a machine that Dan Weld is logged into.

Table 1: The 14 goals in the UNIX data set collected at the University of Washington

taken to construct a Goal Graph, analyse the constructed Goal Graph, and run through a
cycle of Goal Graph construction and analysis, when an action was observed at a time step.

Table 2 gives a summary of the empirical results showing the accuracy of our algorithms.
The first column shows the goals the subject tried to achieve. The achieved goals were the
goals fully or partially achieved after the last observed action had been processed. The
consistent goals were the fully or partially achieved goals that were consistent with the
sequence of observed actions.6 The remaining goals were the goals that remained after the
redundant goals had been removed and the most consistent goals had been selected. The
last column shows whether the given goal was among the remaining goals.

As shown in Table 2, our algorithms successfully recognised 13 out of 14 given goals.
They failed to recognise only one given goal, G10, simply because the sequence of commands
executed by the subject actually failed to achieve the goal. In terms of the UNIX data set,
goal recognition occurs when our algorithms return a single, consistent goal. This occurred
on G2, G4, G7, G8, G9, G13, and G14. On G1, G3, G6, G11, and G12, more than one goal
was recognised, including the goal given to the subject. On G1, G6, G11, and G12, our
algorithms recognised that the subject tried to find one of the files with some properties
in the directory but did not know which file it was. For instance, on G1, the intended
goal was to find a file named ‘core’. The subject successfully found the file named ‘core’ in
the directory, other, by executing a command, ls, to list all files in the directory. Since
there were other files, greenmouse, paper.tex, and action.ps.Z, in the same directory,

6. In our experiments on the UNIX data set, a goal, to which more than two third of the observed actions
were relevant, was recognised as a consistent goal. The threshold on the number of relevant actions is
dependent on the application domain though the strict majority of the actions must be relevant. If the
threshold is too high, our algorithms might fail to recognise the intended goal. On the other hand, if it is
too low, the set of recognised goals might be too large to provide much value because of great ambiguity
on the intended goal.

23



Hong

goal achieved consistent remaining given goal
goals goals goals recognised

G1 15 15 4
√

G2 26 6 1
√

G3 14 4 2
√

G4 56 18 1
√

G5 46 33 6
√

G6 107 47 4
√

G7 85 4 1
√

G8 6 4 1
√

G9 22 5 1
√

G10 9 0 0 ×
G11 12 12 2

√
G12 60 44 6

√
G13 1 1 1

√
G14 8 2 1

√

Table 2: Empirical results of the UNIX domain showing the accuracy of our algorithms

and all these files were also listed by the same command, our algorithms recognised four
goals, finding a file named ‘core’, finding a file named ‘greenmouse’, finding a file named
‘paper’ with extension ‘tex’, and finding a file named ‘action’ with extension ‘ps’ which
is also compressed. On G3, our algorithms recognised that the subject tried to find one
of the users on a machine but did not know who he was. This was as good as a human
observer could do because you simply could not tell from the observed actions which file or
user the subject was trying to find. These recognised goals can be generalised into a single,
consistent goal ‘finding a file in the directory’ or ‘finding a user using a machine’, where
variables are allowed in the recognised goals.

On G5, our algorithms recognised 6 consistent goals. Among these goals, five goals
were to find each of the five files with the same properties of compression and extension
in the directory named ‘backups’. Another goal was to gunzip all files in the directory
named ‘backups’. A human observer could probably do better by recognising the goal of
gunzipping all files in the directory named ‘backups’, because it accounted better for the
gunzip command that had been observed. It was very unlikely that the subject gunzipped
all files in the directory in order to find a file with gunzip compression.

Among the goals we tested, G1, G2, G3, and G4 were originally tested by Lesh and
Etzioni (1995). Our empirical results show a significant improvement on the accuracy of
the goal recogniser implemented by them in terms of the remaining goals. Our algorithms
have 4, 1, 2, and 1 remaining goals on G1, G2, G3, and G4 respectively, while their goal
recogniser has 155, 37, 1, and 15 remaining goals on G1, G2, G3, and G4 respectively, after
the last observed action has been processed. Furthermore, the 4 and 2 remaining goals that
our algorithms have on G1 and G3 can be generalised into two single goals. These results
show that our algorithms perform extremely well with regard to accuracy.

24



Goal Recognition through Goal Graph Analysis

goal length of construction analysis time
observation time time per cycle

G1 2.25 0.535 0.013 0.547
G2 16 0.382 0.102 0.484
G3 3.0 0.021 0.009 0.030
G4 20.5 1.036 3.609 4.645
G5 9 0.426 0.565 0.991
G6 8.78 12.185 4.143 16.329
G7 9.11 16.473 8.581 25.054
G8 3.5 0.014 0.002 0.017
G9 12 0.034 0.050 0.084
G10 15 0.018 0.007 0.025
G11 7 0.051 0.020 0.071
G12 17 0.821 0.774 1.595
G13 1 0.010 0.001 0.011
G14 2 0.013 0.004 0.017

Table 3: Empirical results of the UNIX domain showing the efficiency of our algorithms

It is worth noting that Lesh and Etzioni’s algorithm converges before the last observed
action has been processed. So their algorithm works towards goal prediction, while our al-
gorithms emphasise the explanation of the observed actions, by recognising fully or partially
achieved goals that are consistent with these actions. Their algorithm can quickly prune
out inconsistent goals to get a converged set of hypothesised goals, though the number of
hypothesised goals in the set can sometimes be large. The next step of their work might
be to assign probabilities to these hypothesised goals to differentiate a single goal from the
others, when there exists only one intended goal. On the other hand, it is less desirable for
the goals recognised by our algorithms to be differentiated from each other as the accuracy
of the algorithms is usually high. Our algorithms, however, cannot recognise a goal until it
has been fully or partially achieved.

Table 3 gives a summary of the empirical results showing the efficiency of our algorithms.
The length of observation was the average number of observed actions executed by the
subjects to achieve the given goal. The construction time was the average time it took to
construct the Goal Graph at a time step. The analysis time was the average time it took
to analyse the constructed Goal Graph at a time step. The time per cycle was the average
time it took to go through a two-stage cycle of Goal Graph construction and analysis,
when an observed action was processed at a time step, including constructing the Goal
Graph, recognising the consistent goals, removing redundant goals, and selecting the most
consistent goals. As shown in Table 3, on average at a time step, it took 2.287 CPU seconds
to construct the Goal Graph, 1.277 CPU seconds to analyse the Goal Graph, and 3.564
CPU seconds to process an observed action. Since our algorithms have been written in the
less efficient Prolog and run on a desktop with a Pentium III processor at 600 MHz, more
efficiency could be achieved. The construction time, analysis time, and time per cycle could

25



Hong

0

50

100

150

200

250

10080 19790 29665 39540 49415 59290 69165 81015 90890 100765

Number of Goals

A
ve

ra
ge

 C
PU

 S
ec

on
ds

C-Time

A-Time

P-Time

Figure 6: Empirical results of the UNIX domain showing the scalability of our algorithms

be reduced to well below a CPU second, if the algorithms are coded in a more efficient
programming language and run on a faster machine.

Compared to the empirical results on the efficiency of the goal recogniser implemented
by Lesh and Etzioni (1995), on average, it took 0.547, 0.484, 0.030, and 4.645 CPU seconds
to process an observed action by our algorithms on G1, G2, G3, and G4 respectively, while
1.616, 1.643, 0.648, and 1.610 CPU seconds were taken by their goal recogniser to process
an observed action on the same goals. The average time to process an observed action
was roughly around 1.4 CPU seconds on both a desktop with a Pentium III processor at
600 MHz by our algorithms coded in Prolog and a SPARC 10 by their goal recogniser
coded in Lisp. Given that two different programming languages and machines were used
for the implementation of two different systems, this comparison is hardly meaningful. It is
however apparent that the use of more efficient programming languages and machines can
significantly speed up our algorithms.

We also tested the scalability of our goal recognition algorithms in the UNIX domain.
We tested how the efficiency of our algorithms was affected by the number of possible goals,
that was in turn affected by the number of objects in the universe of objects. We created a
series of spaces of approximate 104, 2 × 104, 3 × 104, up to 105 possible goals respectively
based on the data recorded on G7 in the UNIX data set.7 For doing this, We changed the
files and directories in the file hierarchy, as well as the properties of the files, in the original
data set for G7, to increase or decrease the number of objects in the universe of objects,
while keeping the files and directories related to the intended goal and the properties of
the related files unchanged. In the sense that while part of the Initial Conditions on the
intended goal remained the same, the rest of the Initial Conditions were changed to create

7. The number of goal schemata remains unchanged.

26



Goal Recognition through Goal Graph Analysis

the appropriate number of candidate goals. The change in the file hierarchy reflected the
change in the complexity of the file hierarchy.

The original sequences of commands recorded in the data set were used in the exper-
iments, in conjunction with the different sets of the Initial Conditions, for the creation of
different spaces of candidate goals. Figure 6 shows that the average CPU time taken at
a time step to construct and analyse the Goal Graph (shown as C-Time and A-Time re-
spectively in Figure 6), and to process the observed action as a whole (shown as P-Time in
Figure 6) was approximately linear in the number of candidate goals.

7. Conclusion and Future Work

In this paper, we presented a new approach to goal recognition in which a graph structure
called a Goal Graph is constructed and analysed for goal recognition. We described two
algorithms for constructing and analysing a Goal Graph. Our algorithms recognise partially
or fully achieved goals that are consistent with the observed actions, and reveal valid plans
for the recognised goals or part of them. Our algorithms do not need a plan library. They
allow redundant, extraneous, and partially ordered actions. They are sound, polynomial-
time, and polynomial-space.

Our empirical experiments show that our algorithms recognise goals with great accuracy.
They are computationally efficient. They can be scaled up and applied to domains where
there are tens of thousands of goals and plans. Even though one of our goal recognition
algorithms, the GoalGraphAnalyser algorithm, is not complete, they recognised all the
intended goals in the UNIX data set that were successfully achieved by the subjects.

A limitation of our goal recognition algorithms is that sometimes more than one goal
is recognised, though the number of recognised goals is usually very small. Our algorithms
cannot tell which goal is the most probable one when there is only one intended goal. For
instance, on G5 in the UNIX data set, our algorithms recognised 6 goals. Even though the
intended goal, gunzipping all files in the directory called backups, was among these goals,
and it was probably the most likely one compared to the others, our algorithms could not
differentiate it from the others. Sometimes our algorithms can recognise a unique goal that
implies the intended goal but cannot make it more specific. For instance, on G7 in the UNIX

data set, our algorithms recognised a unique goal, finding the file, index.tex, with its word
count and extension. Even though the achievement of this goal implied the achievement of
the intended goal, finding a file that contains less than 20 words, our algorithms could not
be more specific. These problems are due to the incomplete information we had from the
observed actions. On G7, the observed actions did not have any indication on the likelihood
of the recognised goals being the intended goal. The subject actually achieved G7 because
he knew that the word count was less than 20 words by knowing the word count of the file,
but no observed action was directly used to achieve this.

Several attempts (Carberry, 1990; Charniak & Goldman, 1993; Huber et al., 1994;
Forbes et al., 1995; Pynadath & Wellman, 1995; Bauer, 1995; Albrecht et al., 1998) have
been made to incorporate uncertainty representation and reasoning techniques into plan
recognition for handling uncertain and incomplete information, so that a single plan can
be distinguished from a set of candidate plans. However, these systems rely heavily on the
availability of planning knowledge and to a certain extent the use of plan libraries. In future

27



Hong

work, we intend to investigate the possibility of incorporating uncertainty representation
and reasoning mechanisms into our Goal-Graph-based approach to goal recognition, so that
a unique, specific goal can be recognised when there is only one intended goal, while all the
good features of our Goal-Graph-based approach are kept.

In future work, we also intend to explore the extent to which our Goal Graph represent-
ation can be used for probabilistic goal recognition. In particular, we will consider problem
settings in which the effects of actions are probabilistic and the objective of goal recognition
is to recognise consistent goals with the highest probability of achievement.

Another area of future work is to recognise goals even before they have been partially
or fully achieved by the actions observed so far. In this regard, our current goal recognition
algorithms can be used to recognise goals that each sequence of actions in a very large data
set can achieve. Then each sequence of actions in the data set and the recognised goals can
be used to acquire a probabilistic model of goal prediction by a machine learning method.
This probabilistic model takes the actions observed so far and predicts possible goals even
when they are not partially or fully achieved.

Acknowledgments

This paper is a revised and extended version of a paper appeared in the Proceedings of
AAAI-2000 (Hong, 2000). The author wishes to thank Neal Lesh for providing the UNIX

data set, and anonymous referees for their insights and constructive criticisms, which have
helped improve the paper significantly.

References

Albrecht, D. W., Zukerman, I., & Nicholson, A. E. (1998). Bayesian model for keyhole
plan recognition in an adventure game. User Modeling and User-Adapted Interaction,
8 (1-2), 5–47.

Allen, J. F. (1983). Recognizing intentions from natural language utterances. In Brady, M.,
& Berwick, B. (Eds.), Computational Models of Discourse, pp. 107–166. MIT Press,
Cambridge, MA.

Allen, J. F., & Perrault, C. R. (1980). Analyzing intention in utterances. Artificial Intelli-
gence, 15, 143–178.

Anderson, C., Smith, D. E., & Weld, D. (1998). Conditional effects in Graphplan. In
Proceedings of the 4th International Conference on AI Planning Systems, pp. 44–53.

Bauer, M. (1995). Dempster-Shafer approach to modeling agent preferences for plan recog-
nition. User Modeling and User-Adapted Interaction, 5 (3-4), 317–348.

Bauer, M. (1998). Acquisition of abstract plan descriptions for plan recognition. In Pro-
ceedings of AAAI-98, pp. 936–941.

Bauer, M., & Paul, G. (1993). Logic-based plan recognition for intelligent help systems. In
Bäckström, C., & Sandewall, E. (Eds.), Current Trends in AI Planning, pp. 60–73.
IOS Press.

28



Goal Recognition through Goal Graph Analysis

Blum, A. L., & Furst, M. L. (1997). Fast planning through Planning Graph analysis.
Artificial Intelligence, 90, 281–300.

Carberry, S. (1986). User models: the problem of disparity. In Proceedings of the 11th
International Conference on Computational Linguistics, pp. 29–34.

Carberry, S. (1988). Modeling the user’s plans and goals. Computational Linguistics, 14 (3),
23–37.

Carberry, S. (1990). Incorporating default inferences into plan recognition. In Proceedings
of AAAI-90, pp. 471–478.

Carver, N. F., Lesser, V. R., & McCue, D. L. (1984). Focusing in plan recognition. In
Proceedings of AAAI-84, pp. 42–48.

Charniak, E., & Goldman, R. P. (1993). A Bayesian model of plan recognition. Artificial
Intelligence, 64, 53–79.

Forbes, J., Huang, T., Kanazawa, K., & Russell, S. (1995). The BATmobile: Towards a
Bayesian automated taxi. In Proceedings of IJCAI-95, pp. 1878–1885.

Gazen, B., & Knoblock, C. (1997). Combining the expressivity of UCPOP with the efficiency
of Graphplan. In Proceedings of the 4th European Conference on Planning, pp. 221–
233.

Goodman, B. A., & Litman, D. J. (1992). On the interaction between plan recognition and
intelligent interfaces. User Modeling and User-Adapted Interaction, 2, 83–115.

Grosz, B. J., & Sidner, C. L. (1990). Plans in discourse. In P. R. Cohen, J. M., & Pollack,
M. E. (Eds.), Intentions in Communication, pp. 417–444. MIT Press, Cambridge, MA.

Hong, J. (2000). Goal Graph construction and analysis as a paradigm for plan recognition.
In Proceedings of AAAI-2000, pp. 774–779.

Huber, M. J., & Durfee, E. H. (1995). Deciding when to commit to action during
observation-based coordination. In Proceedings of the First International Conference
on Multi-Agent Systems, pp. 163–170.

Huber, M. J., Durfee, E. H., & Wellman, M. P. (1994). The automated mapping of plans for
plan recognition. In Proceedings of the 10th Conference on Uncertainty in Artificial
Intelligence, pp. 344–351.

Huff, K., & Lesser, V. (1988). A plan-based intelligent assistant that supports the software
development process. In Proceedings of the ACM SIGSOFT/SIGPLAN Software En-
gineering Symposium on Practical Software Development Environments, pp. 97–106.

Kautz, H. A. (1987). A Formal Theory of Plan Recognition. PhD Thesis, University of
Rochester.

Koehler, J., Nebel, B., Hoffmann, J., & Dimopoulos, Y. (1997). Extending planning graphs
to an ADL subset. In Proceedings of the 4th European Conference on Planning, pp.
273–285.

Lesh, N., & Etzioni, O. (1995). A sound and fast goal recognizer. In Proceedings of IJCAI-
95, pp. 1704–1710.

29



Hong

Lesh, N., & Etzioni, O. (1996). Scaling up goal recognition. In Proceedings of the 5th
International Conference on Principles of Knowledge Representation and Reasoning,
pp. 178–189.

Litman, D. J., & Allen, J. F. (1987). A plan recognition model for sub-dialogues in conver-
sation. Cognitive Science, 11 (2), 163–200.

Mooney, R. J. (1990). Learning plan schemata from observation: Explanation-based learning
for plan recognition. Cognitive Science, 14 (4), 483–509.

Pednault, E. P. D. (1988). Synthesizing plans that contain actions with context-dependent
effects. Computational Intelligence, 4 (4), 356–372.

Pednault, E. P. D. (1989). ADL: Exploring the middle ground between STRIPS and the
Situation Calculus. In Proceedings of the 1st International Conference on Knowledge
Representation and Reasoning, pp. 324–332.

Pollack, M. E. (1990). Plans as complex mental attitudes. In Cohen, P. R., Morgan,
J., & Pollack, M. E. (Eds.), Intentions in Communication, pp. 77–101. MIT Press,
Cambridge, MA.

Pynadath, D. V., & Wellman, M. P. (1995). Accounting for context in plan recognition, with
application to traffic monitoring. In Proceedings of the 11th Conference on Uncertainty
in Artificial Intelligence, pp. 472–481.

Schank, R., & Abelson, R. (1977). Scripts, Plans, Goals, and Understanding. Erlbaum.

Sidner, C. L. (1985). Plan parsing for intended response recognition in discourse. Compu-
tational Intelligence, 1 (1), 1–10.

Wilensky, R. (1983). Planning and Understanding. Addison-Wesley Publishing Company,
Reading, MA.

Wilensky, R., & et al. (1988). The Berkeley unix consultant project. Computational Lin-
guistics, 14 (4), 35–84.

30


