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Abstract

Top-down and bottom-up theorem proving approaches each have specific advantages
and disadvantages. Bottom-up provers profit from strong redundancy control but suffer
from the lack of goal-orientation, whereas top-down provers are goal-oriented but often have
weak calculi when their proof lengths are considered. In order to integrate both approaches,
we try to achieve cooperation between a top-down and a bottom-up prover in two different
ways: The first technique aims at supporting a bottom-up with a top-down prover. A top-
down prover generates subgoal clauses, they are then processed by a bottom-up prover. The
second technique deals with the use of bottom-up generated lemmas in a top-down prover.
We apply our concept to the areas of model elimination and superposition. We discuss
the ability of our techniques to shorten proofs as well as to reorder the search space in an
appropriate manner. Furthermore, in order to identify subgoal clauses and lemmas which
are actually relevant for the proof task, we develop methods for a relevancy-based filtering.
Experiments with the provers SETHEO and SPAss performed in the problem library TPTP
reveal the high potential of our cooperation approaches.

1. Introduction

Automated deduction is—at its lowest level—a search problem that spans huge search
spaces. In the past many different calculi have been developed in order to cope with
problems from the area of automated theorem proving. Essentially, for first-order theorem
proving two main paradigms for calculi are in use: Top-down calculi like model elimination
(ME, Loveland, 1968, 1978) attempt to recursively break down and transform a goal into
subgoals that can finally be proven immediately with the axioms or with assumptions made
during the proof. Bottom-up calculi like superposition (e.g., Bachmair & Ganzinger, 1994)
go the other way by producing logic consequences from the input set until an obvious
inconsistency is derived.

When comparing results of various provers (e.g., Sutcliffe & Suttner, 1997) it is obvious
that provers based on different paradigms often behave quite differently. There are problems
where bottom-up theorem provers perform considerably well, but top-down provers poorly,
and vice versa. The main reason for this is that bottom-up provers often suffer from the
lack of goal-orientation of their search, but profit from their strong redundancy control
mechanisms. In contrast, top-down provers profit from their goal-orientation but suffer
from insufficient redundancy control. This entails long proof lengths for many problems
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(e.g., Letz et al., 1994). Therefore, a topic that has come into the focus of research is the
integration of both approaches. Specifically, cooperation between theorem provers (e.g.,
Conry et al., 1990; Schumann, 1994; Denzinger, 1995; Bonacina & Hsiang, 1995; Bonacina,
1996; Wolf & Fuchs, 1997; Fuchs, 1998b, 1998c) based on top-down and bottom-up principles
appears to be promising because by exchanging information each approach can profit from
the other. It is also possible to modify calculi or provers which work according to one
paradigm so as to introduce aspects of the other paradigm into it. This, however, requires a
lot of implementational effort to modify the provers, whereas our approach does not require
changes of the provers but only changes of their input. We can hence employ arbitrary
state-of-the-art provers.

Information that is well-suited for improving the performance of top-down provers are
lemmas deduced by bottom-up provers. These lemmas are added to the input of a top-
down prover and can help to shorten the proof length by immediately solving subgoals.
Normally, the employed proof procedures can significantly profit from the proof length
reduction obtained. The use of lemmas, however, also imports additional redundancy into
the calculus. This means that an unbounded use of bottom-up generated lemmas without
using techniques for choosing only relevant lemmas (i.e. lemmas which lead to a reduction
of the search effort to enumerate a proof) is not sensible. In this article, in contrast to other
approaches which generate lemmas dynamically during the proof run (Astrachan & Stickel,
1992; Astrachan & Loveland, 1997), we want to employ a bottom-up prover for generating
lemmas in a preprocessing phase. After the generation of a pool of lemma candidates
relevant lemmas are selected from this pool and the formula to be refuted is augmented by
these bottom-up generated formulas.

The second main aspect that we consider is top-down/bottom-up integration by trans-
ferring information from a top-down prover to a bottom-up prover (e.g., Fuchs, 1998a).
Our approach is to transfer top-down generated subgoal clauses—which essentially repre-
sent a transformation of an original goal clause into subgoals—to a bottom-up prover and
to augment its input by these clauses. This introduces a goal-oriented component into a
bottom-up prover which can enable it to solve proof problems considerably faster. How-
ever, as is the case with lemmas, an unbounded transfer of subgoal clauses is not sensible.
Thus, we generate again subgoal clauses in a preprocessing phase and integrate only some
of these clauses into the input set of a bottom-up prover. This necessitates techniques for
selecting relevant subgoal clauses, i.e. techniques for selecting a set of subgoal clauses which
can decrease the search effort of a bottom-up prover in order to find a proof.

In order to examine this kind of top-down/bottom-up integration we restrict ourselves
to the bottom-up superposition calculus and the top-down connection tableau calculus.
These calculi are very important since they are the basis for many high-performance the-
orem provers. For instance, the bottom-up provers Spass (Weidenbach et al., 1996) and
Gandalf (Tammet, 1997) that were most successful in recent proving competitions employ
superposition and ordered paramodulation, respectively. The connection tableau calculus
(or its restriction model elimination) is also the basis for very successful top-down provers,
e.g., SETHEO (Moser et al., 1997) or METEOR (Astrachan & Loveland, 1991). In our
opinion the concepts introduced for superposition and the connection tableau calculus can
rather easily be transferred to other bottom-up and top-down calculi. Hence, the choice of
these two calculi surely is justified.
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The article is organized as follows. We start with a brief overview of superposition and
model elimination (Section 2). Moreover, we discuss strengths and weaknesses of the calculi
in more detail and introduce our approach for combining the strengths of both calculi. In
Section 3 we address effects of the integration of ME subgoal clauses into the search state of
a superposition-based prover. Furthermore, we describe two variants of a relevancy-based
filtering of subgoal clauses. Section 4 deals with the use of bottom-up generated lemmas. We
discuss in detail the ability of the produced clauses in order to help decrease proof lengths
for refuting a given set of clauses as well as to reorder the search space in an appropriate
manner. Based on this discussion, we introduce several relevancy measures. In Section 5,
an experimental study conducted with the high-performance theorem provers SETHEO and
Spass reveals the potential of our techniques. We have chosen these systems in order to
show that our concept can easily be integrated into existing systems and is even able to
improve on the performance of very powerful provers. Finally, in Section 6 an overview of
related approaches for top-down/bottom-up integration concludes the article.

2. A Framework for Coupling Top-Down and Bottom-Up Provers

In the following, we introduce typical representatives of top-down and bottom-up calculi
and discuss their strengths and weaknesses in detail. After that, we sketch the basics of our
methodology in order to combine these calculi.

2.1 Automated Theorem Proving with Superposition and Model Elimination

The general problem in first-order theorem proving is to show the inconsistency of a set C
of clauses. A clause is a set of literals. As already discussed, theorem provers usually utilize
either top-down or bottom-up calculi for accomplishing this task.

Typically, a bottom-up calculus contains several inference rules which can be applied
to a set of clauses that constitute the search state. Generally, the inference rules can be
divided into two classes: FEzpansion inference rules permit the generation of new clauses
and contraction inference rules delete clauses or replace them by others. The most popular
bottom-up calculus is the resolution calculus (Robinson, 1965). There, the expansion rules
are resolution and factoring. The resolution calculus can be extended with contraction
rules, e.g. the deletion of tautologies. If equality is involved in a problem it is sensible to
employ the superposition calculus (Bachmair & Ganzinger, 1994), which extends resolution
with specific rules suitable for handling equations. The expansion rules of the superposition
calculus are superposition, equality resolution, and equality factoring. Again, additional
contraction rules such as tautology deletion, subsumption, condensing, and rewriting can
be employed. It is to be emphasized that for our study we employ the version of the
superposition calculus introduced by Bachmair and Ganzinger (1994). Specifically this
entails that factoring is only applied to positive literals.

A bottom-up theorem prover usually maintains a set F¥ of so-called potential or passive
clauses from which it selects and removes one clause C' at a time. This clause is put into
the set F4 of activated clauses. Activated clauses are, unlike potential clauses, allowed to
produce new clauses via the application of some inference rules. The inferred new clauses
are put into FF. Initially, 74 = () and FF = C. The indeterministic selection or activation
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step is realized by heuristic means. To this end, a heuristic /4 associates a natural number
we € IN with each C € FFP, and the C € FF with the smallest weight w¢ is selected.
An important property of heuristics is their fairness. A heuristic is called fair if it selects
potential clauses in such a manner that no clause remains passive infinitely long. Usually
the fairness of the used heuristic implies that the prover is complete, i.e. it can derive the
empty clause when obtaining an inconsistent input set (provided the underlying calculus is
complete).

The main strength of bottom-up calculi and provers is their strong redundancy control.
On the one hand, many inferences which are definitely unnecessary in a proof, e.g. infer-
ences involving tautologies, are omitted. On the other hand, contraction inference rules like
subsumption avoid the repetition of expansion inferences involving the same (or more in-
stantiated) clauses. A big disadvantage of bottom-up calculi is their lack of goal-orientation.
Because certain inferences are favored over others due to the fixed search strategy and the
heuristic weight of the clauses part of it, it might be the case that for a very long time only
clauses which are not part of any proof are enumerated.

Model elimination is a typical top-down calculus which we shall introduce in the form
of the connection tableau calculus (CTC') (Letz et al., 1994). In order to introduce CTC' we
want to start with the basic (free variable) tableau calculus (e.g., Fitting, 1996) for clauses.
A tableau T for C is a tree whose non-root nodes are labeled with literals and that fulfills
the condition: If the immediate successor nodes vyq,...,v, of a node v of T are labeled
with literals Iy, ..., [,, then the clause {/y,...,[,} (tableau clause) is an instance of a clause
in C. In the tableau calculus two inference rules are used, namely the ezpansion and the
reduction rule (e.g., Fitting, 1996). An application of the expansion rule means selecting a
clause from C and attaching the literals of a variant of it to a subgoal s which is a literal
at the leaf of an open branch (a branch that does not contain two complementary literals).
Tableau reduction closes a branch by unifying a subgoal s with the complement of a literal
r (denoted by ~ r) on the same branch, and applying the substitution to the whole tableau.

Connection tableau calculi work on connected tableaux. A tableau is called connected
or a connection tableau if each inner node v (non-leaf node) which is labeled with literal
[ has a leaf node v’ among its immediate successor nodes that is labeled with a literal [’
complementary to [. The inference rules are start, extension, and reduction. The start rule is
always the first inference step of a derivation. It permits a tableau expansion that can only
be applied to a trivial tableau, i.e. one consisting of only one node. Note that the start rule
can be restricted to so-called start relevant clauses without causing incompleteness. Start
relevancy of a clause is defined as follows. If C is an unsatisfiable set of clauses, we call
S € C start relevant if there is a satisfiable subset C’ C C such that C"U{S} is unsatisfiable.
Since the set of negative clauses contains at least one start relevant clause, we also consider
a restricted calculus which only employs negative clauses for the start expansion (CT'Cl¢,).
The reduction rule is the same as in the conventional tableau calculus. Extension is a
combination of expansion and reduction. It is performed by selecting a subgoal s in the
tableau T, applying an expansion step to s, and immediately performing a reduction step
with s and one of its newly created successors. Note that in the area of Horn clauses it
is sufficient to employ start and extension, i.e. the reduction inference is unnecessary (e.g.,
Antoniou & Langetepe, 1994). Thus, we assume that we use versions of CT'C or CTC\,,
that do not employ reduction steps in the area of Horn clauses.
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CTC or CTC,, do not have specific inference rules for handling equality. Instead, when
dealing with equality, the axiomatization must be extended by the reflexivity, symmetry,
transitivity, and substitution axioms of the equality symbol. Indeed, the use of an axiomatic
form of equality is in no sense optimal. But it is very difficult to develop methods for using
built-in equality in tableau calculi that yield convincing results in practice.

If a subgoal s becomes (after some inferences) head of a closed (sub-)tableau we call the
obtained substitution a solution of s.

The notion of a tableau derivation and a search tree is important: We say 7'+ 7" if (and
only if) tableau 7" can be derived from T by applying a start rule if 7" is the trivial tableau,
or by an extension/reduction rule to a subgoal in 7". The connection tableau calculus is not
(proof) confluent. In order to show the unsatisfiability of a clause set C, a search tree, given
as follows, has to be examined in a fair way (each node of the tree must be visited after a
finite amount of time) until a closed tableau occurs. A search tree T defined by a calculus
and a set of clauses C is given by a tree whose root is labeled with the trivial tableau. Every
inner node in 7 labeled with tableau T has as immediate successors the nodes from the
maximal set {vy,...,v,}, where v; is labeled with T; and T+ T;, 1 < i < n.

Since not only the number of proof objects but also their size increases during the proof
process, explicit tableaux enumeration procedures that construct all tableaux in 7 in a
breadth-first manner are not reasonable. Hence, implicit enumeration procedures that apply
consecutively bounded iterative deepening search with backtracking (Korf, 1985) are normally
used. In this approach iteratively larger finite initial parts of the search tree 7 are explored
with depth-first search. A finite segment is normally defined by a so-called completeness
bound (which poses structural restrictions on the tableaux which are allowed in the current
segment, see below) and a fixed natural number, a so-called resource. lterative deepening
is performed by starting with a basic resource value n € IN and iteratively increasing n
until a proof is found within the finite initial segment of 7 defined by one bound and n.
Prominent examples for completeness bounds are the depth bound, inference bound, and
weighted-depth bound.

The depth bound limits the maximal depth of inner nodes (non-leaf nodes) in a tableau
where the current resource n is the maximal depth permitted (the root node has depth 0).
In practice, the depth bound is quite successful (Letz et al., 1994; Harrison, 1996) but it
suffers from the large increase of the segment (defined by a resource n) caused by an increase
of n. The inference bound allows a level by level exploration of the search tree (e.g., Stickel,
1988). In comparison with the depth bound, the inference bound makes a smooth increase
of the search space possible, but it is inferior to the depth bound in practice. In order to
combine the advantages of the depth and the inference bound, the weighted-depth bound
was introduced by Moser et al. (1997). This bound describes a class of possible bounds that
restrict the tableau depth and the number of inferences allowed to infer a specific tableau.

Goal-orientation of C'T'C', as our typical top-down calculus, is given by the connectedness
condition. This condition entails that every literal in a tableau bears a relation to the start
clause. The set of possible start clauses can normally be restricted to quite a small set of
clauses which are sufficient in order to guarantee completeness (e.g., Moser et al., 1997),
e.g. the set of negative clauses as already mentioned. Thus, only certain descendants having
a connection to a start (goal) clause are enumerated. A main problem of proofs with CT'C
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Figure 1: Cooperation between a top-down and a bottom-up prover

is that in general they are rather long. In fact, C'T'C is among the weakest calculi when the
lengths of existing proofs are considered. Therefore, Letz et al. (1994) proposed extensions
of C'TC which are based on a controlled integration of the cut rule. These extensions can
also be seen as restricted lemma mechanisms. A further problem is that often during the
search tableaux with the same or subsumed subgoals occur repeatedly. There are some
extensions of the calculus proposed to overcome such problems. E.g., by Letz et al. (1994)
a restricted subsumption concept and by Astrachan and Stickel (1992) caching techniques
have been introduced.

2.2 Achieving Cooperation by Preprocessing and Input Augmentation

Our approach of integrating top-down and bottom-up provers by cooperation is charac-
terized by preprocessing and input augmentation. Henceforth, let C be the initial clause
set whose inconsistency should be shown. In the preprocessing phase the bottom-up su-
perposition prover generates a set of clauses Cgyr such that C = Cpy. Analogously, we
extract from a certain number of proof attempts of the ME prover a clause set Crp such
that C = Crp. Then, the input set C of the superposition prover is augmented by Crp,
and the input of the ME prover with Cgy;. After that both provers can proceed to work in
parallel. Figure 1 displays this kind of cooperation that is essentially based on a sequential
concatenation of both provers. The approach can be seen as a specific instantiation of the
general cooperation approach TECHS (Denzinger & Fuchs, 1998).

Since the superposition prover works on a search state which contains a set of clauses,
it is very easy to generate a set of valid clauses in a preprocessing phase. A very simple
method is to perform a fixed number 7 of activation steps and to generate the clause sets F 4+
and FP? of active and passive clauses. Then, we select all facts, i.e. positive unit clauses,
from F4<. Since the inferences of a superposition-based prover are sound, it produces
only logic consequences of C. As we shall explain in Section 4 in more detail, it is not
sensible to add all generated positive units to the input of the top-down prover, i.e. to set
Cpy = {C : C'is a fact,C € FA'}. However, it is wise to select only some units with a
function gy, i.e. Cey = ¢pu({C : C is a fact, C € FA}).

Because connection tableau-based provers have a search state which contains deductions
(tableaux) instead of clauses, it is at first sight not obvious how to extract valid clauses
from such a search state which will be well-suited for a superposition-based prover. A
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common method in order to extract valid clauses is to employ lemma mechanisms of ME
provers. Assume that a literal s is a label of the root node of a closed subtableau T*. Let
ly,...,1, be the literals that are used in reduction steps for closing T and that are outside
of 7. Then, the clause {~ s,~ [ly,...,~ [,} may be derived as a new lemma (since it is a
logical consequence of the tableau clauses in 7). Such a lemma could be transferred to a
bottom-up prover. As appealing as this idea sounds, it has some severe restrictions: Such
lemmas usually are, e.g. due to instantiations which were previously needed to close other
branches, not as general as they could be. Hence, often they cannot be used in inferences,
and especially not in contracting inferences which are very important for bottom-up provers.
Since these clauses are generated during the proof run in a rather unsystematic way they
do not really introduce much goal-orientation and hence do not make use of the advantages
of the search scheme typical for ME.

The concept of subgoal clauses permits the generation of clauses derived by inferences
involving a proof goal:

Definition 2.1 (subgoal clause, subgoal clause set)

1. Let C be a set of clauses, let T be a tableau for C. A subgoal clause St regarding T
is the clause S = {l4,...,[,}, where the literals I; are the subgoals of the tableau 7.

2. Let B be a bound, n € IN be a resource, and C be a set of clauses.
If CTC is used, the subgoal clause set SB™C w.r.t. B, n, and C, is defined by SB"C =
{St : T is a tableau in the initial segment of the search tree for C and C'T'C that is
defined by B and n} \C.
If CTC e is in use, the subgoal clause set Sfe’gmc is the set Sfeg"c = {Sr: Sr € SBC,
the start expansion of 7" is performed with a negative clause}.

Note that subgoal clauses are valid clauses, i.e. logical consequences of the initial clause
set. The following example illustrates our notion of subgoal clauses.

Example 2.1 Let C = {{_'g}v {_'ph RS _'pn7g}7 {_'Qh ] _'q’m7g}} Then7 {_'ph s -7_‘pn}
is the subgoal clause St belonging to the tableau obtained when extending the goal =g with
the clause {—p1,...,7pn, g}. If we employ B = inference bound (Inf) and resource k = 2,

then SBHAC = Sge’g’c = {{_‘ph .- -7_'pn}7 {_'qh EERE) _'Qm}}'

A subgoal clause St represents a transformation of an original goal clause (which is the
start clause of the tableau 7') into new subgoals realized by the deduction which led to
the tableau 7. The set S™/*C is the set of all possible goal transformations into subgoal
clauses within £ inferences if we consider all input clauses to be goal clauses, the set Si@g’k’c
is the set of all possible goal transformations into subgoal clauses within & inferences if we
only consider the negative clauses to be goal clauses. More exactly, S+ is the closure
of all (goal) clauses w.r.t. (a fixed number k of) extension and reduction steps, S/2/*€ is
the closure of all negative (goal) clauses w.r.t. k extension and reduction steps.

In order to couple an ME and a superposition prover, we generate in the preprocessing
phase with the inference bound and a fixed resource k > 1 either the set S*C or the set
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Siﬁg’k’c, depending on whether C'TC or CTC',, is used. It is not sensible to set Crp =

ShikC or Crp = Siﬁg’k’c and to augment the input of the bottom-up prover by this set

(see Section 3). Thus, we use again a filter function ¢7p for selecting some subgoal clauses.
That is, Crp = QDTD(SI”f’k’C) - SinfkC op Crp = QOTD(SgTég’k’C) - Sg@g’k’c.

Finally, we want to explain how our method—preprocessing and augmentation of the
input of the provers—is indeed well-suited for overcoming the disadvantages of the provers.

We start with the top-down prover. Usually the clauses Cpyr generated by a superposi-
tion prover are quite general because specialized clauses are eliminated by subsumption or
rewriting. It is hence quite probable that they can often be used for closing open branches
of tableaux enumerated by a top-down prover without instantiating the tableaux. If such
a kind of lemma matching (e.g., Iwanuma, 1997) is possible we are able to close branches
without introducing new subgoals or reducing the possibility that the remaining subgoals
are solvable. If subgoals which often occur in tableaux can be solved, the lemmas are a
good means for redundancy control. Moreover, since the search scheme of a superposition
prover differs from that of an ME prover it is to be expected that it can generate clauses
with few inferences that can close a branch which could only be closed by many inferences
when using no lemmas. Then proof lengths are drastically reduced. See Section 4 for a
more detailed description of the use of lemmas.

The input of a superposition prover is augmented by subgoal clauses which are the result
of a transformation of an original goal clause into subgoals. Hence, the goal-orientation of
a superposition prover is increased if it uses such transformed goal clauses in its inferences.
Since the ME prover employs a different search scheme it can very quickly conduct certain
steps that the superposition prover cannot reconstruct because of its heuristic search. The
search for a proof can then be reduced.

3. Subgoal Clauses for Top-Down/Bottom-Up Integration

In this section we examine the integration of subgoal clauses into the input set of a su-
perposition prover. At first we assume that all subgoal clauses generated within a certain
number of inferences are added to the input set and we give some results regarding proof
length and search reduction. After that, we explain the necessity of selecting only some
subgoal clauses and introduce two selection methods based on the theoretic discussion.

3.1 Reduction of Proof Length and Search through Subgoal Clauses

The cooperation method introduced in the preceding section gives rise to the question of
whether a proof length reduction is possible, i.e. whether there are shorter superposition
proofs of the inconsistency of C U S™H*C or C U Siﬁg’k’c than of the inconsistency of C.
(Note that we measure the length of a proof P by counting the number of inference steps
|P| in it.) Since some inference steps are necessary for enumerating subgoal clauses we
should try to find out whether these inferences can be saved when using the clauses.

This question is mainly of theoretical interest because in general bottom-up provers
do not enumerate minimal proofs. Moreover, bottom-up provers usually perform a lot
of unnecessary inferences. It is more important to analyze whether a bottom-up prover
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can benefit from the use of subgoal clauses in the form of a proof search reduction, i.e.,
a reduction of the number of inferences the prover needs in order to find a proof. It is
particularly interesting to identify the cases of maximal proof search reduction.

3.1.1 SUBGOAL CLAUSE GENERATION viA CTC

Firstly, we examine the case where we employ calculus CTC, i.e. generate ST *C  We
assume further that no equality is involved in the problem, i.e. superposition corresponds
to (ordered) resolution.

Theorem 3.1

1. Let C be a set of ground clauses not containing equality, let O ¢ C, and let k > 1 be
a natural number. Let P, and Py be minimal length resolution refutation proofs for C
and C U S™HRC  respectively. Then, it holds: |Py| > | Py|.

2. For each k > 1 there is a set of (non-ground) clauses C, not containing equality
(O & Cy), such that no minimal length resolution refutation proof for Cp U SInfkCr g
shorter than a minimal length resolution refutation proof for Cy.

Proof:

1. Note that no factorization steps are needed in the case of ground clauses (recall that
clauses are sets of literals). Then, the claim is trivial since the result of the first
resolution step of each minimal proof is an element of ST/ #C,

2. Let & > 1. Let Cy be defined by Cr = {{—p(z1),...,7p(zx)},{p(v1),.. ., p(yx)}}.
Let >= 0 be the ordering used for ordered resolution. Then, a minimal resolution
refutation proof for Ci, requires k£ —1 binary factorization steps (resulting in the clause
{p(y1)}) and k resolution steps. Furthermore, it can easily be recognized that there
are in S™#Ck only clauses which contain at least one positive and one negative literal.
Thus, none of these clauses can lead to a refutation proof for C; US™ #Ck in less than
2k — 1 inferences. a

Hence, a reduction of the proof length is at least possible in the ground case. The
(heuristic) proof search of a resolution-based prover may not profit from the proof length
reduction obtained. For example it is possible that all clauses of a minimal refutation proof
of C have smaller heuristic weights than the clauses from S™/%€ and will hence be activated
before them. Consider following example:

Example 3.1 Let >= () be the ordering used for ordered resolution. Let the clause set C be
given by C = {{—a, b, c},{—g,b},{a},{g},{—c}}. The heuristic # corresponds to the FIFO
heuristic. Furthermore, for the first n activation steps (n € IN, n > 9), resolvents of the two
most recently activated clauses are preferred by H. Then, following clauses are activated
by the prover (in this order): {—a,—b, c}, {—g, b},{—a,~g,c},{a},{—g,c},{g},{c},{~c},O.
Furthermore, if the subgoal clauses of S™*€ are inserted behind the original axioms the
prover will find the same resolution refutation proof for C U S k€ (k > 0) and the proof
search does not benefit from a possible proof length reduction.
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Since the above example (especially the chosen heuristic) is somewhat contrived, it can
be expected for many problems that clauses from S € will be activated. In this case
there is also no guarantee that the proof search is improved because the subgoal clauses can
import additional redundancy.

CTC differs—apart from the lack of factorization—mainly in the handling of equality
from the superposition calculus. In the case that equality is involved in the problem, a
proof length reduction even for ground clauses is not guaranteed.

Theorem 3.2 For each resource k > 1 there is a set of ground unit equations C (O ¢
C) where the minimal superposition refutation proofs for C U S FC are not shorter than
minimal proofs for C.

Proof: Let >= () be the ordering used for superposition. Consider the set of unit equations
C = {{a = b},{f*'(a) # f*1(b)}}. We assume that >= () is used as an ordering for
superposition. Then, a minimal superposition refutation proof for C requires two inferences,
a superposition step into f71(a) # f¥71(b) resulting in the inequation f*~'(a) £ f*1(a),
and then an equality resolution step. In the set S € are either non-unit clauses whose
refutation requires at least 2 inferences or the units U = {{f*(a) # fi ()}, {f'(a) = f7(b)} :
0<i<k-—1,0<j<k—1}. Since the refutation of C UU also requires 2 inferences a
reduction of the proof length is impossible. O

In summary a reduction of the heuristic search for a proof cannot be guaranteed be-
cause the proof length may not be reducible, the subgoal clauses may be ignored by the
superposition prover, or the subgoal clauses may import too much additional redundancy.
The two latter points also hold in the ground case without equality where at least a proof
length reduction is guaranteed.

The second point is no real problem since—as our experiments showed—usually subgoal
clauses will be activated and will be involved in the search process of a prover. The risk that
subgoal clauses are ignored can be minimized by selecting especially such subgoal clauses
which will take part in the search with a high probability, e.g. clauses with a small heuristic
weight regarding the heuristic of a superposition prover. In our selection process we need
not use such a focus according to the experimental results. The first and third point show
some theoretical weaknesses but in connection with appropriate relevancy-based selection
techniques we could observe in practice that a restructuring of the search caused by using
subgoal clauses allows proofs to be found faster.

3.1.2 SUBGOAL CLAUSE GENERATION VIA CTC,,,,

Secondly, we examine the case where we employ the calculus CTC',,,, i.e. generate Siﬁg’k’c.
Then, even for ground clauses not containing equality it is possible that minimal proofs
cannot be shortened when employing subgoal clauses.

Theorem 3.3 There is a set of ground clauses C where no minimal length resolution
refutation proof for C U Si’;g’Q’C is shorter than a minimal length resolution refutation proof

for C.

178



COOPERATION BETWEEN ToP-DowN AND BoTTOM-UP THEOREM PROVERS

Proof: Consider the following set C of clauses (again we employ >= 0):

{14716717}7 {147167_'17}7 {137_'14}7
C=1 Alz,~le}, {-la,=la}, {la,ls,~ls},
{=ly, s},  {h,la,=l3}, {1y, I3}

Each minimal refutation proof for this set requires 9 resolution steps, e.g.:

[1,az] {l4,ls, 17} [10,res(1,2)] {la, 16}
[2,az] {l4,ls, 7} [11,res(6,10)]  {ls,l5}
[3,az] {l3,-l4} [12,res(3,10)]  {ls,ls}
[4,az] {l3,-ls} [13,res(7,11)]  {—l3, 14}
[5,az] {—lg,—l4} [14,res(5,13)]  {~l3}
[6,az] {l4,~ls,7ls} [15,7es(4,12)] {ls}
[7,az] {9, 15} [16,res(8,9)] {lg,—l3}
[8,az] {li,l3, i3} [17,res(14,16)] {-ls}
[9,az] {—l1,lz,~l3} [18,res(15,17)] O

Now, it holds:

SInf,Q,C _ {_'127 167 17}7 {_'127 167 _'17}7 {ll7 _'137 _'14}7
ned {_'ll7 _'137 _'14}7 {_'127 _'157 _'16}

When enumerating all proofs for C U 55%‘7270 one can recognize that the minimal proof
length cannot be reduced. |

In the case where equality is involved in our proof problems, we obtain a theorem
analogous to the previous one:

Theorem 3.4 For each resource k > 1 there is a set of unit equations C where the minimal
superposition refutation proofs for C U Si@g’k’c are not shorter than minimal proofs for C.

Proof: In analogy to Theorem 3.2. a
We can recognize that for CT'C,., the results are essentially the same as for CTC'. In
general the reduction of the heuristic search for a proof cannot be guaranteed and proof
lengths may not always be reduced. In practice, however, we could again observe that a
restructuring of the search caused by subgoal clauses often allows proofs to be found faster.
In the following we simply assume that inferences with subgoal clauses are not omitted
by a superposition prover, i.e. that they are involved in the proof search. We want to
deal in more detail with the problem of identifying subgoal clauses which can lead to a
large reduction of the search effort and how we can efficiently select such subgoal clauses.
This problem has to be tackled with heuristics since there is—as we have examined—no
theoretical guarantee and also no method to decide whether subgoal clauses are useful.

3.2 Relevancy-Based Generation of Subgoal Clauses

Even when using small resources k the sets ST *C and Si’;é’k’c can become quite large.
Thus, it is not sensible to integrate all subgoal clauses from S/ € or Si@g’k’c into the
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search state of a superposition-based prover. Integrating too many clauses usually does not
entail a favorable rearrangement of the search because the heuristic “gets lost” in the huge
number of clauses which can be derived from many subgoal clauses. It is hence reasonable
to develop techniques for filtering subgoal clauses that appear to entail a large gain in
efficiency for a superposition prover if they can be proven. That is, we are interested in
filtering relevant subgoal clauses. As already described in Section 2, we generate a set of
subgoal clause candidates and then we select some subgoal clauses from this set. The chosen
subgoal clauses are added to the search state of the bottom-up prover. In the following,
we will at first introduce some criteria for measuring the relevancy of a clause. Then, we
shall introduce two techniques for generating subgoal clause candidates and deal with the
selection of relevant subgoal clauses.

3.2.1 RELEvVANCY CRITERIA FOR SUBGOAL CLAUSES

Two main characteristics of subgoal clauses can contribute to a speed-up of the proof search.

Firstly, since according to Section 3.1 subgoal clauses introduce additional redundancy
it is important that some of the clauses can be proven quite easily, that is more easily than
the original goal(s). In order to estimate this, it is necessary to judge whether they can
probably be solved with the help of clauses of the input set. Measuring similarity between
a goal and other clauses with the techniques developed by Denzinger and Fuchs (1994),
Denzinger et al. (1997), or Fuchs (1997) may be well-suited for this estimation.

Secondly, a solution of a newly introduced subgoal clause should not always entail a
solution of an original goal within few steps of the superposition-based prover. If this were
the case then the integration of new subgoal clauses would not promise much gain. Criteria
in order to estimate this are: Firstly, the transformation of an original goal clause into a
subgoal clause by an ME prover should have been performed by using many inferences, i.e.
k should be quite high. Then, a solution of a new subgoal clause usually does not entail
a solution of an original goal within few steps because the probability is rather high that
a bottom-up prover cannot—due to its heuristic search—quickly reconstruct the inferences
needed to infer the original goal. Secondly, if there is a subgoal clause ST and some of
the tableau clauses of the tableau T" have a high heuristic weight w.r.t. the heuristic of the
superposition-based prover, a high gain of efficiency can be expected if the prover can prove
St. This is due to the fact that inferences needed to infer the original goal using St are
difficult for the superposition-based prover.

3.2.2 EFFICIENT (GENERATION AND SELECTION OF SUBGOAL CLAUSES

In order to generate a set of interesting subgoal clauses it is important that we employ a
large resource for generating subgoal clauses. As we have already discussed, subgoal clauses
that are generated with a small number of inferences do not promise much gain because
a bottom-up prover may easily reconstruct the inferences needed to infer them. However,
it is not possible to generate all subgoal clauses S5 or Siﬁg’k’c for a sufficiently large
resource k as subgoal clause candidates because their huge number means that the costs of
generation and additional selection are too high. Hence, we must restrict ourselves to a set
of subgoal clause candidates that is a subset of S/ ¥ or Si@g’k’c, k sufficiently large (see
Section 5).
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L el

Figure 2: Inference-based generation of a set of subgoal clause candidates

Our first variant, an inference-based method, starts by generating subgoal clauses from
SIRC o Si@g’k’c for a rather large resource k£ and stops when N, subgoal clause candidates
are generated. The advantage of this method is that it is very easy and can be efficiently
implemented. Tableaux are enumerated with a fixed strategy for selecting subgoals for
inferences (usually left-most/depth-first) and for each tableau its subgoal clause is stored.
The main disadvantage of this method is that due to the fixed strategy and the limit of
the number of subgoal clauses, we only obtain subgoal clauses which are inferred from
goal clauses by expanding particular subgoals with a large number of inferences and other
subgoals with only a small number of inferences. (See also Figure 2: Ovals are tableaux
in a finite segment of the search tree 7, the lines represent the - relation. Grey ovals
represent enumerated tableaux, i.e. their subgoal clauses are stored, white ovals represent
tableaux which are not enumerated.) Thus, the method is somewhat unintelligent because
no information about the quality of the transformation of an original goal clause into a
subgoal clause is used. Certain transformations are favored against others only due to the
uninformed subgoal selection strategy.

Our second variant, an adaptive method, tries to overcome these disadvantages in the
following way: Instead of permitting more inferences when generating subgoal clauses due
to an uninformed subgoal selection strategy, we want to allow more inferences at certain
interesting positions of the search tree T for a given set of clauses C.

In detail, our approach is as follows: At first, we generate all subgoal clauses ST/+%1.€
or Si@g’kl € with a resource k; which is smaller compared to the first variant. Then, a
fixed number N, of subgoal clauses is chosen which promise the highest gain of efficiency
regarding the previously mentioned criteria. More exactly, we choose subgoal clauses which
are maximal w.r.t. a selection function . One possible realization of 1 is:

¥(ST) = a1 - I(ST) + g - max({H(C) : C is a tableau clause in T})
+ ag - max({sim(St,C) : C € C,|C| = 1})

The higher the number of inferences I(S7) which are needed to infer S, the higher
¥ (St) should be. Hence, a; should be positive. Setting ay > 0 is also sensible. If there
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Figure 3: Adaptive generation of a set of subgoal clause candidates

are tableau clauses in 7" which have a high heuristic weight regarding the heuristic H of
the superposition-based prover we can—as already discussed—gain a lot of efficiency. The
function sim measures whether literals from St can probably be solved with unit clauses
from C. It maps a pair of clauses to a real number. The larger sim(St,C) the larger
the similarity between St and the unit clause C. We utilize a variant of the function
occnest which is defined by Denzinger and Fuchs (1994) for accomplishing the task. We set
a1 > ag > ag > 0 due to the increasing vagueness of the criteria.

Now, let MNres C SIfk1C op NMNrer C Si@g’kl’c be the set of chosen subgoal clauses.
Then, we generate subgoal clauses with a resource ko but employ the clauses from MNres as
start clauses for the subgoal clause enumeration. We call the set of subgoal clauses generated
with this method §fk2 €M™/ (Consider also Figure 3: The dotted line shows which
subgoal clauses are generated with resource k;. Then some of them are selected (black ovals)
and used as starting points for the generation of new subgoal clauses with resource k3.) The
resource kg should again not be too high in order to allow a fast enumeration of the subgoal

NTC .
clauses. The set of subgoal clause candidates is then given by S/ -k1.C ( SInfk2,C.M7rel (if

we employ CTC) or by Siﬁé’kl’c U STnf ko €M el (if we employ CTC.,). Thus, subgoal
clause candidates are on the one hand all subgoal clauses derived with a certain number kq
of inferences such that it can be assumed that the proof length is reduced. On the other
hand, we have some subgoal clause candidates which are derived with a higher number of
inferences, at most ki + k3. These subgoal clauses promise a high gain of efficiency because
they are derived from subgoal clauses selected with function . That is, they are derived
from clauses which are considered to be very relevant for a superposition-based theorem
prover.

For selecting subgoal clauses from the set of subgoal clause candidates we employ func-
tion ¢—which is mainly based on the function »—and select clauses with the highest weight
regarding ¢. ¢ is defined by

©(ST) = ¥(S1) — 8(ST).
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# simply counts a weighted sum of the number of variables in S7 and two times the
number of function or predicate symbols in S7. Hence, quite “general” subgoal clauses are
preferred. This is sensible because they can usually be solved more easily.

4. The Use of Lemmas in Model Elimination

In this section we examine theoretical and practical aspects concerning the integration of
superposition-generated lemmas into the input set of a model elimination prover. At first,
we present some results regarding proof length and search reductions. As before, we measure
the proof length by the number of inferences in it. Proof search is measured by the number
of inferences the prover must perform in order to find a proof. Then, we introduce some
methods for a relevancy-based filtering of lemmas.

4.1 Proof Length Reduction

When adding positive unit lemmas Cpy of a bottom-up prover to the axiomatization C of a
top-down prover, a proof length reduction is possible if the following situation occurs. If T
is a tableau that represents a proof and sg is a literal which has a depth smaller than n—1 of
a branch in T with depth n we can reduce the proof length if ~sg is unifiable with a lemma
l € Cpy. Hence, we are interested in the question of whether we can find lemmas useful in
the described sense if we choose Cpy = ¢py({C : C is a fact,C' € FA4'}) as proposed in
Section 2. Unfortunately, even if gy selects all facts in {C': C'is a fact, C' € F4'} and i
is arbitrary large there is no guarantee that we can find a useful lemma in this set. This is
even true if the bottom-up prover employs a fair heuristic.

Theorem 4.1 For each © € IN there is a clause set C; and a fair heuristic H; such that
no positive unit lemma from F4' (generated by a resolution prover starting with C; and
employing heuristic 7;) can reduce the proof length of a proof for C; with CTC (CTCey).

Proof: Let i be a natural number and >= () be the ordering used for ordered resolution. For a
literal [, [/| denotes the number of symbols in I. Set C; = {{p(a)}, {—p(z), p(f(2))},{~q(a)},
{=q(b), q(a)},{q(0)}}. Let H;({lr, ..., 1n}) = 30—y HE (L), with [; = I}, if [; is positive, and

l; = ~l;, otherwise. Moreover,

L _ |l| 7l
i (l)_{ 2404l 1

Then it holds: For a fixed parameter ¢, H; is a fair heuristic. Moreover, there are only
ME proofs of the inconsistency of C; which contain literals with top-symbol g. F4* contains
only literals with top-symbol p, though. Hence, it is impossible that a lemma of F4+ is

p(t),t is a term
q(t),t is a term.

applicable. O

From a theoretical point of view we have again the negative result that in general useful
lemmas are not elements of 4. However, empirical studies (see Section 5) reveal that in
the most cases useful lemmas are generated by a superposition prover. Hence, we assume
that useful lemmas are in Cpy and henceforth examine which lemmas—being part of a
proof—can lead to a high proof search reduction of an ME prover.
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4.2 Proof Search Reduction

The effects regarding the structure of the search space of a CTC (CTC),.,) prover caused
by the use of lemmas are closely related to the utility problem (e.g., Minton, 1990) from the
area of explanation-based learning (EBL) and macro operator learning (see also Markovitch
& Scott, 1993). At the first sight, lemma use could be interpreted as introducing new edges
into the original search tree 7 because a sub-deduction (proof of a lemma) can be reduced
to one inference by applying a lemma. This corresponds to macro operator learning or EBL
where inference chains are generalized and disjunctively stored as new operators or concept
descriptions (e.g., Minton, 1990), respectively. We should notice, however, that the use of
lemmas does not only insert new edges but also new nodes into the search tree. This comes
from the fact that the structure of a tableau T} where a lemma is applied differs from the
structure of an in other parts equal tableau Ty where the lemma proof is “expanded”. This
has no influence on the inferences possible with 77 and T3 (the edges outgoing from the
nodes vy and vy that are labeled with 77 and T3, respectively) but it has an effect on the
value a completeness bound B assigns to the tableaux. Considering the bounds introduced
in Section 2, Ty can be enumerated with a resource value which is smaller than or equal
to that needed to enumerate T5. In analogy to macro operator learning and considering
these remarks, we now summarize the advantages and disadvantages of using lemmas in
connection with iterative deepening procedures.

A minor advantage of introducing a lemma is the advantage of decreasing path costs, i.e.
the costs of reproducing the inferences needed for its proof. The major advantage of using
lemmas is that they make a restructuring of the the search space possible.

On the one hand, one can save the possibly high search effort needed for proving a useful
lemma (assuming the lemma proof can be expanded within the finite segment of 7 to be
considered). On the other hand, it is possible that a closed tableau can be reached within a
smaller resource value (“resource reduction”). Then, the reordering effects usually allow us
to solve problems that were previously out of reach because the search procedure gets lost
in the (usually exponentially) larger segment of the search tree defined by a larger resource.
It is clear, however, that this advantage only holds if the segment of the search tree defined
by the lower resource value is not increased too much by the use of the lemmas. Considering
our search bounds we can see that normally resource reductions cannot be guaranteed when
using superposition generated lemmas in an ME prover. When using the inference bound
a resource reduction is guaranteed if by using lemmas a proof length reduction can be
obtained. In the case of the depth and weighted-depth bound in general not even a proof
length reduction leads to a resource reduction.

Besides the positive effects of using lemmas, some negative effects also occur. These
stem from an increased redundancy. The main disadvantage regarding the use of lemmas
is the increase of the branching rate of the search tree. It is possible that a misleading
solution of a subgoal may be obtained that could not be found before within a given finite
segment. Even if a resource reduction from n to n’ < n occurs it is possible that solutions of
subgoals that could not be found with resource n (without lemmas) can now be found with
resource ' and lemmas. This can reorder the search space in a hardly controllable manner.
Considering the inference bound in some cases tableaux which could not be enumerated
with resource n can now be enumerated with lemmas. It is possible that the use of lemmas
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“spares” more than n — n’ inferences. If we use the depth bound it might be that in a
tableau some branches which can be closed in a depth greater than n without lemmas can
now be closed in a depth smaller than or equal to n’. Then a lot of superfluous inferences
can be introduced to the new minimal proof segment. Analogous effects take place when
using the weighted-depth bound (especially also when using the configuration of the bound
as described by Moser et al. (1997)).

Additionally, duplications of segments of the search space can occur. Assuming the
expanded lemma proof lies within the initial segment of 7 to be considered, the use of an
irrelevant lemma can cause a repeated exploration of parts of the search space which does
not contain a proof: Since a superfluous solution of a subgoal is found twice (via the lemma
and by performing the inferences needed to prove the lemma) the resulting superfluous
inferences have to be performed twice, too. This disadvantage, however, can usually be
overcome by using local failure caching (Letz et al., 1994).

Besides these effects, which cause a restructuring of the search space, it is even possible
that the use of lemmas increases the number of solutions of certain subgoals that exists in
the whole search tree. This is because the use of lemmas can shadow well-known pruning
techniques like regularity since no regularity checks are possible in the proof of a lemma.
Furthermore, the newly introduced lemmas cause the problem that in each inference a
possibly large number of lemmas has to be tested in order to determine whether inferences
are possible (applicability test). This necessitates new unification attempts.

In summation our lemma mechanism is in general not able to produce lemmas that
lead to a proof length reduction and thus to a resource reduction. Nevertheless experience
shows that in many cases reductions of the proof length and the needed resource can be
obtained. When a small number of lemmas is sufficient for a resource reduction the number
of inferences which can be spared by using lemmas can exceed the number of new superfluous
inferences by magnitudes. Thus, mechanisms are needed in order to select relevant lemmas
from {C : C is a fact,C € F**} that should be inserted into Cgy. If we can find a rather
small lemma set which permits a resource reduction then in almost all cases we can find a
proof much faster than would be possible without using lemmas (see Section 5). Note that
the case of a large reduction of the proof length without a reduction of the resource needed
normally performs significantly worse than the case of a small proof length reduction with
a reduction of the resource needed.

4.3 Relevancy-Based Lemma Selection

Analogous to the foregoing section we now want to introduce some abstract principles for
filtering lemmas based on the discussion regarding the structure of the search space. Then,
we deal with concrete heuristics applied for selecting lemmas.

4.3.1 RELEVANCY CRITERIA FOR LEMMAS

Since superposition provers employ a different search scheme than ME provers and since
they have effective mechanisms for handling equality, we can assume that a few subgoals
which are hard to solve (the proof necessitates a large resource w.r.t. a given completeness
bound) with an ME prover can be solved with lemmas. However, when using lemmas in
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order to close some subgoals of an open tableau the remaining open subgoals should be
easy to solve w.r.t. the given bound. Otherwise, we still cannot solve the problem within a
smaller resource. Note that we usually cannot expect that all branches of a proof can be
“shortened” by superposition-generated lemmas. Since our lemma generation provides no
guarantee that useful lemmas are generated (see Section 4.1) usually only a small number of
lemmas can be employed in a proof. All in all we obtain that “interesting” proofs (i.e. those
we want to find) for an application of lemmas are proofs that contain many subgoals that
are easy to solve—and can hence be solved “conventionally” within a small resource—and
only a few hard subgoals that must be solved with lemmas. Then, we can expect that using
lemmas leads to resource reductions. Qur filter techniques should hence try to find lemmas
that might be part of such proofs.

Furthermore, we should estimate how many new superfluous inferences are introduced
by a lemma. The integration of new lemmas must not increase the branching rate too much.
Otherwise, the gain of a possible resource reduction is negated by the large overhead (see
Section 4.2).

These criteria lead us to three different filter functions that concentrate on certain
aspects of relevancy. The filter functions are well-suited for all of the previously introduced
completeness bounds. Due to the vagueness of the filter criteria we use each filter function
in order to choose some lemmas (see Section 5). Note that it is better to select a few
unnecessary lemmas than to omit the selection of important ones.

4.3.2 EXPANSION/CONTRACTION-BASED SELECTION

The first filter function is called 3;;. This function is rather simple and aims at finding
lemmas that do not lead to a high increase of the branching rate. 3, accomplishes this by
using knowledge obtained in the lemma generation (preprocessing) phase of the bottom-up
prover. In detail, ¢%;; selects facts with the highest value regarding a judgment function

S
VB

Definition 4.1 (Judgment function 3;;)
For a positive unit [, generated in the preprocessing phase, let (/) and (/) be the numbers
of expansion and contraction inferences, respectively, that [ was involved in. Then

Ypu(l) = k() - (D).

¢]§U counts the inferences that each lemma candidate was involved in and rates ex-
panding inferences negative, contracting inferences positive. If a fact [ was often involved
in an expanding inference like resolution or superposition, then [ or many subterms of it
are unifiable with (subterms of) (maximal) literals of axioms or derived clauses. Hence, if [
is added to the axiomatization of the top-down prover it can be expected that [ or certain
descendants of it can very often take part in extension steps. Since this leads to a high
increase of the branching rate we rate this negative. Of course, we are interested in the fact
that a lemma can be applied by the ME prover. However, since lemmas of a superposition
prover are usually quite general most of them may be used for closing occurring subgoals.
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7 g(b) = f(h(D))

o — trangitivity "="
~g(b) =f(f(b)) - f(f(b)) = f(h(b))
symmetry "=" ‘ ‘ congruence "="
~f(f(b)) =g(b)  ~f(b) =h(b)
axiom ‘ ‘ symmetry "="
f(f(b)) =g(b) " h(b) =f(b)
‘ axiom

h(b) = f(b)

Figure 4: Simulating a superposition step with ME

Our criterion aims mainly at excluding lemmas that are applicable in too many cases and
hence introduce too many solutions of subgoals that do not lead to a refutation of the in-
put clauses. In contrast to expanding inferences we rate contraction inferences positively.
Indeed, ME provers do not have contracting inferences. But as shown by Letz et al. (1992),
subsumption can partly be simulated by subsumption constraints. Hence, clauses that are
able to contract many other clauses can support search pruning techniques.

4.3.3 DERIVATION-BASED SELECTION

The second filter function B, tries to select facts that are able to close subgoals that are
very hard to solve with a connection-tableau-based prover. In order to estimate this, we
consider the derivation history of a fact. We employ this filter function only if equality is
involved in a problem.

Example 4.1 Let {f(f(z)) = g(z)} and {h(b) = f(b)} be axioms. Then, the clause
{g(b) = f(h(b))} can be derived by one superposition step. However, if =g(b) = f(h(b)) is
a subgoal of an ME proof, its proof is more complicated (see Figure 4).

In general, if the superposition step is performed at a position p and |p| denotes the
depth of the position (above |p| = 1), then at most |p| + 5 inferences are needed in order
to prove the result of such a superposition step. The proof necessitates at most a depth of

Ip| + 3.

This example shows that the simulation of the specific equational operations of a su-
perposition prover necessitates a high depth as well as inference resource in an ME prover.
That is, lemmas derived by many superposition steps are able to close subgoals that cannot
be solved by an ME prover within small resources. Hence, if such lemmas are applicable
large resource reductions possibly occur for depth or inference oriented bounds. The judg-
ment function QﬁgU employs this criterion. Again, the filter function gogU selects facts with
the highest value regarding this judgment function.
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Definition 4.2 (Judgment function 5;;)
For a positive unit / generated in the preprocessing phase, let @bgU(l) be defined by

0 , [ is an axiom
VB (I) +¥E(ly) + 1,1 is derived by a superposition step with premises
D _
‘ BU(I) = ll and 12
Yoy lbgU(li) ,[ is derived by a non-superposition inference

involving the literals Iy, ...,[, (n € IN).

4.3.4 COMPLEXITY-BASED SELECTION

Our third filter function %;; aims at selecting lemmas that are able to solve some hard
subgoals of ME subgoal clauses such that the resulting open subgoals can easily be solved.

Hence, the judgment function @bgU used by @%U considers the sets of subgoal clauses §5"¢

or Sfé;’c for a certain resource n. For each subgoal clause sg, if a lemma [ with 'y')g’évg(l) >0

exists, the lemma [ with the highest judgment ngffg (/) is selected until a maximal number
of lemmas is selected (see Section 5). This judgment is computed as follows.

Definition 4.3 (Judgment function zbg’gg

For a positive unit [ generated in the preprocessing phase and a subgoal clause sg =
{l1,.. ., 1}, let 'l/)gfrg(l) be defined in the following manner:

If no subgoal can be solved with [, i.e. 73,1 < ¢ < m, 0 : 0 = mgu(~l;, 1), then ‘@bggg(l) =0.
Otherwise, let sgr = {uy,...,ur} C sg be a set of literals and o be a substitution so that o
is most general with: Vz,1 < z < k: o(~u,) = o(l). Moreover, under all subsets of sg and
substitutions with this property, let the set sgy and the substitution ¢ be a maximum of the

function G*, defined by G*?({u1,...,ur},0) = 143" |k( ) =luz| ! Then, the remaining
ooy lo(uz)]=|uz

literals of sg are sgp = {r1,...,7;} = sg\ sgu. Let v be a complexity function, i.e. ¥ maps
literals to [0;1] and high values of v indicate that the respective literal (subgoal) appears
to be solvable. Then,

e = Y em) - D (o) - .

rEsgr uesgy

We can recognize that ng’gg(l) really rates [ with a high value if many hard subgoals
(w.r.t. v) of sg can be solved with [. Moreover, [ is rated with a high value if there are only
a few subgoals in the subgoal clause sg that cannot be solved by lemmas and that appear
to be solvable rather easily (w.r.t.v). In our realization, 7 considers subgoals to be solvable
that are small, have a rather flat term structure, and many variables in comparison with the
term size. In future we will further refine 'lbg’gg by explicitly considering the completeness
bound which is used for the top-down proof search.

1. sgu is a rather large set of subgoals that can be solved with ! such that not too many symbols are
introduced by the unifier. This is sensible because otherwise the possibility that the remaining subgoals
can be solved is decreased too much.
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5. Experimental Study

In order to conduct an experimental evaluation of our integration of top-down/bottom-up
provers, we coupled two renowned provers: the ME prover SETHEO and the superposition
prover SpAass. We have used the version of SETHEO as described by Moser et al. (1997).
Spass has been employed in version 0.55.

5.1 Architecture and Behavior of the Experimental System

Our experimental environment can be described as follows: Each prover runs on its own
processor and obtains the initial clause set C as input. We employed a rather efficient
method to organize the preprocessing. Essentially, the top-down prover generates subgoal
clauses with one of the two variants. In our environment this does not require changes in the
top-down prover but can be performed with built-ins of the PROLOG-style input language
of SETHEO. Since SETHEO employs CT'C),., we experimented only with subgoal clauses
obtained with negative start clauses. Then, these subgoal clauses are filtered, transferred to
the bottom-up prover, and integrated into its search state. The preprocessing of the bottom-
up prover is performed in parallel with the preprocessing of the top-down prover. The prover
activates clauses with its basic heuristic until the top-down prover finishes its preprocessing.
Thus, we achieve synchronization of the provers. After that, we extract the positive units
from the set of active facts of SPASS and filter some facts as described. Since we can employ
the generated subgoal clauses of SETHEO for the filter function ¢%;; the generated subgoal
clauses can be used as additional input of SPAss as well as for the selection of lemmas for
SETHEO. Finally, the provers proceed to tackle the problem in parallel with their standard
settings. By using this environment we can achieve cooperation by exchanging lemmas
and subgoal clauses without one concept disturbing the other. In contrast, both concepts
support each other because results obtained from one preprocessing can be employed in the
other.

We experimented in the light of problems stemming from the well-known problem library
TPTP v.1.2.1 (Sutcliffe et al., 1994; Sutcliffe & Suttner, 1998). In order to obtain a reliable
collection of data, we employed all domains contained in the TPTP as our test set. Because
these domains cover a wide range of very different problems we assume that this is a reliable
test set.

Since the TPTP contains too many problems to list and discuss the runtimes of single
problems, we will present an overview of the number of solved problems in the TPTP
library. Furthermore, we study in which domains cooperation is especially important and
deal with the main features responsible for this. In addition we study the results in three
domains in more detail to give an impression for the decrease in run time. This concerns
the domains CAT (category theory), LDA (LD-algebras), and COL (combinatory logic).
The problems in the domains CAT and LDA contain equality as well as non-Horn clauses.
COL is a Horn-equality domain.

In detail, the parameters of our experimental system are: The subgoal clause candidates
were generated in such a way that for variant 1 we employed the resource £ = 10 which
performed best in the experiments. The use of higher resources did not yield better results.
We limited the set of subgoal clauses by Ny, = 500. For variant 2 we employed k; = ky =9
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as resources. As start clauses for an adaptive refinement we selected N, = 5 subgoal
clauses. These parameters allowed the efficient generation of all subgoal clauses within
the initial segments of the search tree. Usually with this method at most 500 subgoal
clauses were generated, i.e. about the same number as when employing variant 1. For the
selection of subgoal clauses that are to be transmitted to SPASS we used domain-dependent
parameters. For CAT, COL, and LDA we used 100 clauses. In the other domains in
preliminary experiments the use of 30 clauses achieved the best results.

The bottom-up lemmas were selected via the functions ¢3;;, ¢B;;, and ©%;;. We selected
with each of the functions a maximum of 10 clauses.

The setting of SETHEO was automatically chosen as described by Moser et al. (1997).
The Spass standard heuristic essentially selects clauses of the smallest size. Periodically,
clauses are selected with breadth-first search.

5.2 Experimental Results

In the following we compare the results of our cooperative prover with the single provers.
This comparison is performed regarding the whole TPTP library. After that, we analyze
runtimes in few selected domains of TPTP.

5.2.1 COMPARISON OF DIFFERENT VARIANTS IN THE TPTP

Table 1 presents results of our experiments. It shows the number of solved hard problems
in certain domains of TPTP. Solved means that a proof could be found within 300 seconds.
We consider a problem to be hard if neither SPASS nor SETHEO are able to solve it within
10 seconds. The table only presents the results of such domains where hard problems exist
and where at least one hard problem could be solved by any of the considered variants.
Note that the table cannot give hints on the power of the single provers. This is because it
does not give the complete number of problems which can be solved by each single prover in
the whole domain. Since many non-hard problems are in the TPTP this number is usually
much higher than the number of solved hard problems. Nevertheless, the table is sufficient
for analyzing the performance of our cooperative system since only the hard problems are
interesting for studying the potential of cooperation.

Column 1 of the table displays the name of the domain. Columns 2 and 3 present the
number of solved problems of Spass and SETHEO (on a SPARCstation-20/712) when work-
ing alone. Column 4 shows the number of solved problems of SPass when it obtains subgoal
clauses from SETHEO which are generated regarding variant 2. This variant performs better
than variant 1 (see also the following subsection). Column 5 displays the number of solved
problems of SETHEO when it obtains bottom-up generated lemmas from Spass. In that
case we always employed variant 2 for generating subgoal clauses (recall that the selection
of lemmas depends on the way how subgoal clauses are generated). Column 6 gives the
number of solved problems of a competitive version of SPASS and SETHEO in order to show
that our cooperative prover is indeed much more powerful than a simple competitive parallel
prover. Finally, in column 7 we can find the number of solved problems of our cooperative
system.
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‘ domain H SPASS ‘ SETHEO H adaptive ‘ lemma H competitive | cooperative

ANA 0 2 2 2 2 4
BOO 4 3 5 4 5 6
CAT 6 4 11 8 7 14
CIV 1 0 1 0 1 1
COL 2 10 2 14 12 16
GEO 7 10 8 11 14 15
GRP 30 1 36 3 30 38
HEN 7 5 9 7 10 12
LCL 25 8 26 9 30 31
LDA 5 1 9 1 6 9
NUM 1 0 1 0 1 1
PLA 3 2 3 2 3 3
RNG 4 6 4 6 9 9
ROB 2 1 3 1 3 3
SET 21 24 24 35 39 48
SYN 0 0 1 0 0 1

\ | 118] 77] 145]  103] 172 211

Table 1: Integration of top-down/bottom-up approaches by cooperative provers: solved
hard problems

The results reveal the high potential of our approach to significantly improve on single
provers. SPASS is only able to solve 55.9% of the problems which can be solved by coop-
eration, SETHEO can only solve 36.5%. Competition of provers is very successful because
of the very different behavior of the provers. But even a competitive prover consisting of
Spass and SETHEO can only solve 81.5% of the problems solvable by cooperation. Hence,
cooperation is really important in order to increase the success rate. When integrating sub-
goal clauses into SPAss its solvability rate is increased by 22.9%. In the most cases subgoal
clauses take part in the search process and can help to reorder the search in a favorable
manner. The use of lemmas increases SETHEO’s performance by 33.8%. The increase of
the solvability rate of SETHEO is really due to occurring resource reductions. In almost all
cases where a substantial speed-up is obtained we could find a proof with a smaller resource.
Then, the lemmas are used as expected, i.e. they are able to close subgoals that occur after
few inferences and whose ME proof would require many inferences.

When taking a closer look at the results we can recognize the following. A prover
which already shows a rather satisfactory behavior in a specific domain can often profit
from others. Cooperation can entail that other hard problems can additionally be solved.
However, if a prover is not suitable for a certain domain then cooperation will normally not
result in a significant increase of its performance. Because of the fact that SETHEO and
Spass show a very different behavior in the most cases at least one prover can be improved
in a certain domain.
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It is interesting to find out whether certain characteristics of problems lead to a high
or low performance of the cooperative system. We examine whether the characteristics
“a domain contains equality” and “a domain contains non-Horn problems” influence the
performance. First, we should note that these characteristics do not completely determine
the performance of the cooperative system. There are gains of efficiency for all kinds of
problem, regardless of the type of clauses occurring in the problems. But we can at least
observe some tendencies.

Firstly, we can observe that the cooperation approach is especially well-suited for prob-
lems containing equality. The best results are obtained in the domains CAT, GRP, and
SET which contain many problems with equality. When analyzing proof runs we can find
two reasons for this. In such domains SPass is able to support SETHEO because it has much
stronger inferences for handling equality than SETHEO. SPASS can often derive “difficult”
lemmas with few inferences, i.e. lemmas whose derivation would require many inferences
by SETHEO. SETHEO can support SPASS because it is able to make transformations of the
proof goal that Spass cannot perform because of its fixed ordering used for superposition.
This can increase the flexibility of the proof search performed by Spass.

Secondly, we consider whether the fact that a domain contains mostly Horn or non-Horn
problems influences the performance of the cooperation approach. Considering the domains
where the cooperation approach could successfully be applied we can notice that successes
could be obtained for Horn (e.g., COL) as well as non-Horn domains (e.g., SET). In the
domains where no hard problems could be solved (neither sequentially nor with cooperation)
often the percentage of non-Horn clauses is rather high (note that these domains do not
appear in the table). The main reason for this, however, appears to be that the single
provers show a weak performance in these domains. A strong relationship between the
performance of the cooperative prover and the fact whether a problem is Horn or non-Horn
could not really be found in the experiments.

5.2.2 ANALYSIS OF RUNTIMES IN SELECTED DOMAINS

Up to now we only considered the number of solved problems. In addition, it is interesting
to analyze whether the use of subgoal clauses or lemmas can speed-up the proof search in
general, i.e. also for problems that can be solved by single provers. Short run times are
especially important if theorem provers are used within interactive prover environments.
We restrict ourselves to the three domains CAT, COL, and LDA and are going to analyze
the runtimes in more detail.

Table 2 presents the runtimes when tackling hard problems of the three test domains. We
omitted all problems that could neither be solved by a single prover when working alone, nor
by any of the cooperation variants. Column 1 of the table displays the name of the problem.
Columns 2 and 3 present the runtimes of Spass and SETHEO (on a SPARCstation-20/712)
when working alone, columns 4 and 5 the runtimes of SPAss when it obtains subgoal clauses
from SETHEO which are generated regarding variants 1 and 2, respectively. Note that the
runtimes include the generation and selection time of subgoal clauses, and the transmission
to Spass. Column 6 displays the runtime of SETHEO if it obtains bottom-up generated
lemmas from Spass. In that case we always employed variant 2 for generating subgoal
clauses. Also these runtimes include the preprocessing of Spass and the transmission and
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problem || SPASS | SETHEO || inference-based | adaptive || lemma || competitive | cooperative
LDAOO5-2 279s - 265s 8s - 279s 8s
LDA006-2 276s - 304s 10s - 276s 10s
LDAQOO7-1 16s 366s 19s 21s 311s 16s 21s
LDAOO7-2 - 50s 7s 7s 14s 50s 7s
LDAO09-2 - - - 24s - - 24s
LDAO10-1 - - - 9s - - 9s
LDAO10-2 - - - 26s - - 26s
LDAO11-1 54s — 58s 9s — 54s 9s
LDAO11-2 21s - 358 7s - 21s 7s
CAT001-1 - - - - 9s - 9s
CATO001-3 134s 32s 6s 6s 11s 32s 6s
CAT001-4 33s 11s 58 5s 6s 11s 58
CAT002-2 - - - - 98s - 98s
CAT003-1 - - - - 38s - 38s
CATO004-3 — 23s — 9s 10s 23s 9s
CATO008-1 91s 126s 6s 6s 48s 91s 6s
CAT009-1 — — 10s 10s — — 10s
CAT009-3 - - - 29s 17s - 17s
CAT009-4 53s - 47s 50s - 53s 50s
CAT010-1 — — 11s 9s — — 9s
CAT011-3 17s - 12s 12s - 17s 12s
CAT014-3 18s — 11s 11s — 18s 11s
CAT018-3 - - - 74s - - 74s
COL003-2 - - - - 494s - 494s
COL003-3 — 60s — — 54s 60s 54s
COL003-4 — 19s — — 35s 19s 35s
COL003-5 - - - - 100s - 100s
COL003-7 - 285s - - 32s 285s 32s
COL003-9 - 27s - - 21s 27s 21s
COL034-1 - 60s - - 70s 60s 70s
COL036-1 - 108s - - 106s 108s 106s
COL037-1 - 110s - - 36s 110s 36s
C0L038-1 - 110s - - 108s 110s 108s
COLO41-1 — 39s — — 38s 39s 38s
C0L042-2 - - - - 48s - 48s
C0L042-3 - - - - 81s - 81s
C0L042-4 - - - - 52s - 52s
COLO57-1 — 12s — — 8s 12s 8s
COL060-1 46s — 20s 20s — 46s 20s
COLO61-1 46s - 17s 16s - 46s 16s
| [ 32.5% | 40.0% | 40.0% |  55.0% || 62.5% || 62.5% | 100% |

Table 2: Integration of top-down/bottom-up approaches by cooperative provers: runtimes
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integration of the lemmas. Column 7 gives the runtime of a competitive version of Spass
and SETHEO (minimum of the runtimes of columns 2 and 3). Finally, in column 8 we can
find the runtime of our cooperative system (minimum of the runtimes of columns 5 and 6).
The entry “—” means that the problem could not be solved within 1000 seconds.

Since all domains contain equality the results are better than the results over the whole
TPTP. Our cooperative prover can solve all listed problems, whereas SPASS is only able to
solve 32.5%, SETHEO only 40.0%. A competitive prover consisting of SPAss and SETHEO
can merely solve 62.5% of the problems. Not only the success rate but also the runtimes
are clearly improved when using a cooperative prover. The runtimes are often decreased by
substantial factors (in spite of the fact that running the two provers in parallel consumes
twice as much total CPU time).

When studying the runtimes and proofs obtained by SETHEO we can observe the follow-
ing. If speed-ups of SETHEO are really due to occurring resource reductions, in almost all
cases a substantial speed-up is obtained. Sometimes—for instance in the COL domain—we
have the situation where no resource reduction takes place but reordering effects allow find-
ing proofs faster. In this situation, the speed-ups are low. Let us take a closer look at the
runtimes of SPAss when using subgoal clauses. When considering the results of variant 1,
the results show that a naive and uninformed generation of subgoal clauses usually does not
entail much gain. So, only 40% of the problems can be solved using this variant. Variant 2,
however, shows quite a satisfactory behavior. Hence, an intelligent generation of a subgoal
clause pool really does strongly influence the efficiency.

6. Discussion

Integration of top-down and bottom-up provers by employing cooperation is very promising
in the field of automated deduction. Due to certain strengths and weaknesses of provers
following different paradigms, techniques that try to combine the strengths by cooperation
can allow an improvement of the deductive system. Our approach of combining top-down
and bottom-up provers by processing top-down generated subgoal clauses in a bottom-up
prover achieves this combination by introducing goal-orientation into a bottom-up prover
thus combining strong redundancy control mechanisms and goal-directed search. The use
of bottom-up generated lemmas in a top-down prover can contribute to significantly reduce
proof lengths such that proofs can be found with smaller resources.

Related approaches for supporting top-down by bottom-up inference also mainly aimed
at employing bottom-up created lemmas in a top-down prover. Similar to our method by
Schumann (1994) and Fuchs (1998a, 1999) lemmas are created in a preprocessing phase and
the input clauses are augmented by these formulas. The main difference of these approaches
and our approach is the kind of the used lemmas. There, the ME inference mechanism is
used in order to generate lemmas. This has the advantage that in some cases—in contrast
to our technique—proof length or resource reductions are guaranteed. However, the lemma
mechanisms used by Fuchs (1998b, 1998a, 1999) generate quite “easy” lemmas. Hence, their
potential w.r.t. the size of the resource reduction is limited.

Other approaches try to dynamically create unit lemmas during the proof run of the
ME prover (Astrachan & Stickel, 1992; Iwanuma, 1997; Astrachan & Loveland, 1997).
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After each successful solution of a subgoal a lemma might be generated and added to the
input clauses. The aim of this kind of lemma generation is to produce lemmas that are
able to reduce the search amount by eliminating repeated sub-deductions. One criticism
regarding this kind of lemma generation is the fact that it is unclear whether or not useful
lemmas can be generated. There is no guarantee that lemmas can be produced during
the proof run which can contribute to a proof, i.e. which can be “re-used”. Furthermore,
as already mentioned, the generated lemmas are usually not as general as possible due to
instantiations coming from the solutions of subgoals previously solved. This can reduce
the applicability of a lemma although the “generalized” proof could be re-used for refuting
the input clauses. Thus, although some hard problems could only be solved with such
lemma techniques (see Astrachan & Loveland, 1997), no stable success has been reported
over a large set of problems. The main disadvantages of all approaches which only aim
at supporting top-down provers originate from the fact that in some domains, especially if
equality is involved, superposition-based provers clearly outperform ME provers. Thus, in
such domains it may be more sensible to develop techniques in order to support the more
powerful bottom-up prover than the weaker top-down prover.

In order to improve bottom-up proof search by using top-down performed inferences the
following approaches have been employed. Firstly, again one prover (the bottom-up prover)
is assisted by clauses derived from another prover (the top-down prover). The approach
from Sutcliffe (1992) uses lemmas generated by a guided linear deduction system (and not
subgoal clauses) in order to support resolution-based provers. Due to the lack of goal ori-
entation (as described in Section 2.2) this method could not yield convincing results in
practice. Secondly, there are approaches to make bottom-up provers more goal-directed by
forcing them to work only with some relevant clauses which are detected by top-down cal-
culations. The methods described by Bancilhon et al. (1986), Stickel (1994), and Hasegawa
et al. (1997) transform a set of clauses into another clause set which is then evaluated in a
bottom-up manner. The specific transformation provides a combination of top-down and
bottom-up processing and prunes the bottom-up evaluation to relevant clauses (which bear
a connection to a proof goal). Thus, obviously the bottom-up proof search becomes more
goal oriented. Also the method described by Loveland et al. (1995) provides a relevancy
testing for bottom-up calculations. Based on top-down proof attempts the relevancy of
a clause is dynamically determined during the bottom-up calculation. In contrast to our
method in these approaches the bottom-up prover has to tackle the whole proof task. Our
approach for using top-down generated subgoal clauses in a bottom-up prover does not
provide a relevancy testing of bottom-up inference but supports the bottom-up inference
process by simplifying the original goal. Thus, the proof length may be shortened. Further-
more, parts of the search space of the bottom-up prover, which contain relevant clauses but
may be difficult to enumerate, can be traversed by a single inference which provides large
search reductions.
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