
Software Architecture: Practice, Potential, and Pitfalls
Panel Introduction

David Garlan Dewayne Perry

School of Computer Science AT&T Bell Laboratories
Carnegie Mellon University 600 Mountain Ave.
Pittsburgh, PA 15213 USA Murray Hill, NJ 07974 USA

1 What is software architecture?

A critical aspect of the design for any large software
system is its gross structure – that is, its high-level organi-
zation of computational elements and interactions between
those elements [3, 6]. Broadly speaking, we refer to this
as the software architectural level of design. Recently soft-
ware architecture has begun to emerge as an important
field of study for software engineering practitioners and re-
searchers. This emergence is evidenced by a large body of
recent work in areas such as module interface languages,
domain specific architectures, architectural description lan-
guages, formal underpinnings for architectural design, and
architectural design environments.

What do we mean by the term “software architecture”?
If we look at the current uses of the term “architecture”, we
find that it is used in different ways, often making it diffi-
cult to understand what aspect is being addressed. Among
the various meanings are (a) the architecture of a particular
artifact, as in “the blueprints describe this building,” (b)
an architectural style, as in “that church is an example of
Gothic architecture,” and (c) the general study of architec-
ture, as in “he has an advanced degree in architecture.”

To clarify the meaning of the term “architecture” with re-
spect to software systems, it is helpful to observe that the re-
cent emergence of interest in software architecture has been
prompted by two distinct trends. The first is the recognition
that over the years designers have begun to develop a shared
repertoire of methods, techniques, patterns and idioms for
structuring complex software systems. For example, the
box and line diagrams and explanatory prose that typically
accompany a high-level system description often refer to
such patterns as a “pipeline”, a “blackboard-oriented de-
sign”, or a “client-server system”. Although these terms
rarely have precise definitions, they permit designers to de-
scribe complex systems using abstractions that make the
overall system intelligible. Moreover, they provide signif-
icant semantic content that inform others about the kinds
of properties that the system will have: the expected paths

of evolution, its overall computational paradigm, and its
relationship to similar systems.

The second trend is the recent interest in exploiting spe-
cific domains to provide reusable frameworks for product
families. This is based on the idea that common aspects
of a collection of related systems can be extracted so that
each new system can be built by “instantiating” the shared
infrastructure. Familiar examples include the standard de-
composition of a compiler (which permits undergraduates
to construct a new compiler in a semester), standardized
communication protocols (which allow vendors to interop-
erate by providing services a different layers of abstrac-
tion), fourth generation languages (which exploit the com-
mon patterns of business information processing), and user
interface toolkits and frameworks.

Generalizing from these trends, it is possible to iden-
tify three salient distinctions. The first distinction is be-
tween traditional concerns about design of algorithms and
data structures, on the one hand, and architectural con-
cerns about the gross modularization of a large system, on
the other. The former has been the traditional focus of
much of computer science, while the latter is emerging as
a significant and different design level that requires its own
notations, theories, and tools.

The second distinction is between system description
based on definition-use structure and architectural descrip-
tion based on graphs of interacting components. The for-
mer modularizes a system in terms of source code, usually
making explicit dependencies between use sites of the code
and corresponding definition sites. The latter modularizes
a system as a graph, or configuration, of “components” and
“connectors”. Components define the primary points of
computation in the system, while connectors define the in-
teractions between those components. These interactions
can be as simple as procedure calls or data sharing, or
can be as complex as pipes, event broadcast, client-server
protocols, database accessing protocols, etc.

The third distinction is between architectural instance
and architectural style. An architectural instance refers to



the architecture of a specific system. Box and line diagrams
that accompany system documentation describe architec-
tural instances since they apply to individual systems. An
architectural style, however, defines constraints on the form
and structure of a family of architectural instances. For ex-
ample, a “pipe and filter” architectural style might define
the family of system architectures that are constructed as
a graph of incremental stream transformers. Architectural
styles typically prescribe such things as a vocabulary of
components and connectors (e.g., filters and pipes), topo-
logical constraints (e.g., the graph must be acyclic), seman-
tic constraints (e.g., filters cannot share state), and specific
instances of components or connectors (e.g., there must
be a database in the system). Different stylistic categories
range from abstract architectural patterns and idioms (such
as “client-server” organization) to concrete “reference ar-
chitectures” (such as the ISO OSI communication model
and the traditional linear decomposition of a compiler).

2 Significance to software engineering

Architectural design of large systems has always played
a significant role in determining the ultimate success of a
system: choosing an inappropriate architecture can have
a disastrous effect. However, traditionally architectural
design has been largely informal and ad hoc, with the re-
sult that it has been difficult to communicate, analyze, and
compare architectural designs and principles. We believe
that the current interest in software architecture signals the
emergence of a more disciplined basis for architectural de-
sign that has the potential to significantly improve our abil-
ity to construct effective software systems.

Specifically, a principled use of software architecture
can have a positive impact on at least four aspects of soft-
ware development.

1. Understanding: Software architecture simplifies our
ability to comprehend large systems by presenting
them at a level of abstraction in which the whole sys-
tem can be understood [3, 6]. Moreover, at its best,
architectural description exposes the high level con-
straints on system design as well as the rationale for
making specific architectural choices.

2. Reuse: Architectural description supports reuse at
multiple levels. While most current work on reuse
focuses on component libraries, architectural design
supports, in addition, both reuse of large components
(such as subsystems), and also the complementary
need for reusable frameworks into which components
can be integrated. Existing work on domain-specific
software architectures and reference frameworks have
already begun to provide evidence for this [5].

3. Evolution: Software architecture can expose the di-
mensions along which a system is expected to evolve.
By making explicit what are the “load-bearing walls”
of a system, system maintainers can better understand
the ramifications of changes, and thereby more accu-
rately estimate costs of modifications [6].

4. Analysis: Architectural description provides new op-
portunities for analysis [6], including high-level forms
of system consistency checking [2, 4], conformance
to an architectural style [1], and domain-specific anal-
yses for architectures that conform to specific styles.

3 Purpose of the panel

Whatever the long-term impact of software architecture
may turn out to be, an appropriatestarting point is a concrete
appraisal of the current state of the practice in the use of
software architecture. It is the purpose of this panel to take
a step in this direction. By assembling a panel of experts
with a broad base of experience in the area, we hope to
provide concrete examples of what is now possible when
architectural principles are applied to industrial problems
in systematic ways, to consider the potential impact of
software architecture over the next few years, and to suggest
steps that should be taken to bring this about.

References

[1] Gregory Abowd et al. Using style to give meaning to soft-
ware architecture. In Proc. of SIGSOFT’93: Foundations of
Software Engineering, December 1993.

[2] Robert Allen and David Garlan. Formalizing architectural
connection. In Proc. of ICSE’16, May 1994.

[3] David Garlan and Mary Shaw. An introduction to soft-
ware architecture. In Advances in Software Engineering and
Knowledge Engineering, Volume I. World Scientific Publish-
ing Company, 1993.

[4] David C. Luckham et al. Partial orderings of event sets and
their application to prototyping concurrent timed systems,
Unpublished draft of March 1992.

[5] Erik Mettala and Marc H. Graham. The domain-specific
software architecture program. Technical Report CMU/SEI-
92-SR-9, CMU Software Engineering Institute, June 1992.

[6] Dewayne E. Perry and Alexander L. Wolf. Foundations for
the study of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4), 1992.


